Piano Dance Revolution

- CHARLIE’S ANGELS

...and Charlie
I. Inspiration

• Inspired by FAO Schwartz piano
• Consists of a projection, position detection, and audio output system
• Piano keyboard projection on the floor
• User interacts with piano by stepping on the keys
• When activated, the keys light up and play appropriate note

Courtesy flickr user charles.hope. Used with permission.
II. System Block Diagram

Diagram showing the system block diagram with components such as Locate3D, Locate2D, FrameBuffer, CameraProc, BoardDisplay, VGA, Projector, AudioGen, and Speakers.
III. Projection
III. Projection

• Two projectors, two FPGA’s
• Rectangle module to generate rectangle with border
• Modules black_key and white_key to generate black and white keys
• Module row to generate a row of keys
• Module piano_board to stack up three rows of keys
• 35 bit number into piano_board, each bit encode for a key
• 1 – key is stepped on, light up
III. Projection
IV. Position Detection

- Bright red band is worn on the player's ankle.
- Two cameras connected to two FPGAs.
- **CameraProc:** Processes the camera input and stores the RGB data into the frame buffer.
- **FrameBuffer:** A module which stores the input signal of CameraProc into the on-board ZBT (Zero-Bus-Turnaround) memory for later processing.
IV. Position Detection

- **Locate2D:** Examines the frame buffer of a single camera and determines xy coordinates of the user’s ankle from the viewpoint of the camera. Output will be an xy coordinate, or a signal indicating no visible player.

- **Locate3D:** Receives both xy coordinates from both instances of Locate2D. Uses simple triangulation to determine the height and depth of the user’s feet. Output is an xyz coordinate.

- **BoardDetect:** Based on the Locate3D xyz coordinate, determines which key is being pressed, if any.

- **PlayFSM:** State machine for game play. Receives BoardDetect output. Sends signals to AudioGen module and BoardDisplay modules to play the appropriate sound and light up the appropriate keys.
IV. Position Detection

- Cameras are at a 90 degree angle to each other.
- Cameras are at ground level.
IV. Position Detection

- Both cameras measure the height of player's ankle.
- One camera receives x position, other camera receives y position.
- Combination is a single (x, y, z) coordinate.
V. Audio Output

- Pitch input from PlayFSM Module
- Create sine wave using an instantiation of a sine/cosine table from IP CoreGen
- Sample sine wave at 48kHz
- Output PCM data to left and right channels of AC’97 Codec
V. Audio Output

• AC’97:
 – 12.288MHz bit rate
 – 48 kHz sample rate
 – 256 bit frames

• Mixed audio project – will use multiple clock domains

• Synchronize inputs to ac97_bit_clk
VI. Game Mode

- Prerecorded songs in “storage,” played upon selection
- Corresponding keys light up with note
- User must step on appropriate key to accumulate points
- Score is calculated and displayed
VII. Lab Kit Communication

• At least two Lab Kits need to be connected and communicate information, since we have two VGA projectors and two NTSC cameras.

• To minimize wiring, lab kit communication will be through a high speed serial protocol.

• One lab kit will be primary, and the other a slave. This minimizes communication requirements.