High performance in dynamic languages:

6.172 guest lecture

Prof. Steven G. Johnson
MIT Applied Mathematics, MIT Physics
Dynamic languages for interactive math...

The two-language approach:

High-level dynamic language for productivity,

+ low-level language (C, Fortran, Cython, ...) for performance-critical code.

= Huge jump in complexity, loss of generality.
Just vectorize your code?
= rely on mature external libraries, operating on large blocks of data, for performance-critical code

Good advice! But...

- **Someone** has to write those libraries.
- Eventually that person will be **you**.
 — some problems are impossible or just very awkward to vectorize.
As high-level and interactive as Matlab or Python+IPython, as general-purpose as Python, as productive for technical work as Matlab or Python+SciPy, but as **fast as C**.
Generating Vandermonde matrices

given \(x = [\alpha_1, \alpha_2, ...] \), generate:

\[
V = \begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_2^{n-1} \\
1 & \alpha_3 & \alpha_3^2 & \ldots & \alpha_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_m & \alpha_m^2 & \ldots & \alpha_m^{n-1}
\end{bmatrix}
\]

NumPy (numpy.vander): [follow links]

Python code ... wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Writing fast code “in” Python or Matlab = mining the standard library
for pre-written functions (implemented in C or Fortran).

If the problem doesn’t “vectorize” into built-in functions,
if you have to write your own inner loops ... sucks for you.
Generating Vandermonde matrices

given $x = [\alpha_1, \alpha_2, ...]$, generate:

$$V = \begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_2^{n-1} \\
1 & \alpha_3 & \alpha_3^2 & \ldots & \alpha_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_m & \alpha_m^2 & \ldots & \alpha_m^{n-1} \\
\end{bmatrix}$$

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but low level limited to small set of types.

Julia (type-generic code):

```julia
function vander(x, n=length(x))
    m = length(x)
    V = Array(eltype(x), m, n)
    for j = 1:m
        V[j,1] = one(x[j])
    end
    for i = 2:n
        for j = 1:m
            V[j,i] = x[j] * V[j,i-1]
        end
    end
    return V
end
```
function vander(x, n=length(x))
 m = length(x)
 V = Array(eltype(x), m, n)
 for j = 1:m
 V[j,1] = one(x[j])
 end
 for i = 2:n
 for j = 1:m
 V[j,i] = x[j] * V[j,i-1]
 end
 end
 return V
end

note: works for any container of any type with "*" operation
... performance ≠ inflexibility
Special Functions in Julia

Special functions s(x): classic case that cannot be vectorized well
... switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries, but some are written in pure Julia code.

Pure Julia \text{erfinv}(x) \ [= \text{erf}^{-1}(x)]
3–4× faster than Matlab’s and 2–3× faster than SciPy’s (Fortran Cephes).

Pure Julia \text{polygamma}(m, z) \ [= (m+1)\text{th}\ derivative\ of\ the\ \ln\ \Gamma\ function]
~ 2× faster than SciPy’s (C/Fortran) for real z
... and unlike SciPy’s, \textit{same code} supports complex argument \(z\)

\textbf{Julia code can actually be faster than typical “optimized” C/Fortran code, by using techniques [metaprogramming/codegen generation] that are hard in a low-level language.}
Why can Julia be fast?

First need to understand: Why is Python slow?

goto Jupyter/IJulia notebooks from 18.S096.