Lecture 11

Parallelizing Compilers
Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation
Types of Parallelism

- **Instruction Level Parallelism (ILP)**
 - Scheduling and Hardware

- **Task Level Parallelism (TLP)**
 - Mainly by hand

- **Loop Level Parallelism (LLP) or Data Parallelism**
 - Hand or Compiler Generated

- **Pipeline Parallelism**
 - Hardware or Streaming

- **Divide and Conquer Parallelism**
 - Recursive functions
Why Loops?

- 90% of the execution time in 10% of the code
 - Mostly in loops

- If parallel, can get good performance
 - Load balancing

- Relatively easy to analyze
Programmer Defined Parallel Loop

- **FORALL**
 - No “loop carried dependences”
 - Fully parallel

- **FORACROSS**
 - Some “loop carried dependences”
Parallel Execution

● Example

  ```c
  FORPAR I = 0 to N
  ```

● Block Distribution: Program gets mapped into

  ```c
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
      FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

● SPMD (Single Program, Multiple Data) Code

  ```c
  If(myPid == 0) {
      ...
      Iters = ceiling(N/NUMPROC);
  }
  Barrier();
  FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  Barrier();
  ```
Parallel Execution

- **Example**

  ```
  FORPAR I = 0 to N
  ```

- **Block Distribution: Program gets mapped into**

  ```
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1
      FOR I = P*Iters to MIN((P+1)*Iters, N)
  ```

- **Code that fork a function**

  ```
  Iters = ceiling(N/NUMPROC);
  ParallelExecute(func1);
  ...
  void func1(integer myPid)
  {
      FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
  }
Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation
Parallelizing Compilers

• Finding FORALL Loops out of FOR loops

• Examples

  FOR I = 0 to 5

  FOR I = 0 to 5

  For I = 0 to 5
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

FOR $I = 0$ to 6
  FOR $J = I$ to 7

- Iterations are represented as coordinates in iteration space
  - $\overrightarrow{i} = [i_1, i_2, i_3, \ldots, i_n]$
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations $\rightarrow$ Lexicographic order
  
  $[0,0]$, $[0,1]$, $[0,2]$, ..., $[0,6]$, $[0,7]$, $[1,1]$, $[1,2]$, ..., $[1,6]$, $[1,7]$, $[2,2]$, ..., $[2,6]$, $[2,7]$, ...
  
  $[6,6]$, $[6,7]$, ...
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations $\rightarrow$ Lexicographic order
- Iteration $i$ is lexicographically less than $j$, $i < j$ iff there exists $c$ s.t. $i_1 = j_1$, $i_2 = j_2$, ..., $i_{c-1} = j_{c-1}$ and $i_c < j_c$
Iteration Space

- N deep loops → n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```plaintext
FOR I = 0 to 6
 FOR J = I to 7
```

- An affine loop nest
  - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
  - Array accesses are integer linear functions of constants, loop constant variables and loop indexes
Iteration Space

- N deep loops $\rightarrow$ n-dimensional discrete cartesian space
  - Normalized loops: assume step size = 1

```
FOR I = 0 to 6
 FOR J = I to 7
```

- Affine loop nest $\rightarrow$ Iteration space as a set of linear inequalities
  
  \[
  0 \leq I \\
  I \leq 6 \\
  I \leq J \\
  J \leq 7
  \]
Data Space

- M dimensional arrays $\rightarrow$ m-dimensional discrete cartesian space
  - a hypercube

Integer $A(10)$

Float $B(5, 6)$
Dependences

- True dependence
  \[ a = a = a \]

- Anti dependence
  \[ a = a \]

- Output dependence
  \[ a = a = a \]

- Definition:
  Data dependence exists for a dynamic instance \( i \) and \( j \) iff
  - either \( i \) or \( j \) is a write operation
  - \( i \) and \( j \) refer to the same variable
  - \( i \) executes before \( j \)

- How about array accesses within loops?
Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR $I = 0$ to $5$


**Iteration Space**

0 1 2 3 4 5

**Data Space**

0 1 2 3 4 5 6 7 8 9 10 11 12


Prof. Saman Amarasinghe, M.I.T.
Array Accesses in a loop

FOR I = 0 to 5

Iteration Space

<table>
<thead>
<tr>
<th>I</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[I+1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Space

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Array Accesses in a loop

FOR I = 0 to 5
Array Accesses in a loop

FOR I = 0 to 5
Recognizing FORALL Loops

- Find data dependences in loop
  - For every pair of array accesses to the same array
    - If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
    - Then there is a data dependence between the statements
  - (Note that same array can refer to itself – output dependences)

- Definition
  - Loop-carried dependence:
    - dependence that crosses a loop boundary

- If there are no loop carried dependences $\Rightarrow$ parallelizable
Data Dependence Analysis

Example

```
FOR I = 0 to 5
```

- Is there a loop-carried dependence between $A[I+1]$ and $A[I]$?
  - Is there two distinct iterations $i_w$ and $i_r$ such that $A[i_w+1]$ is the same location as $A[i_r]$?
  - $\exists$ integers $i_w, i_r \ 0 \leq i_w, i_r \leq 5 \ i_w \neq i_r \ i_w + 1 = i_r$

- Is there a dependence between $A[I+1]$ and $A[I+1]$?
  - Is there two distinct iterations $i_1$ and $i_2$ such that $A[i_1+1]$ is the same location as $A[i_2+1]$?
  - $\exists$ integers $i_1, i_2 \ 0 \leq i_1, i_2 \leq 5 \ i_1 \neq i_2 \ i_1 + 1 = i_2 + 1$
Integer Programming

- **Formulation**
  - \( \exists \) an integer vector \( \vec{i} \) such that \( \vec{A} \vec{i} \leq \vec{b} \) where \( \vec{A} \) is an integer matrix and \( \vec{b} \) is an integer vector

- **Our problem formulation for \( A[i] \) and \( A[i+1] \)**
  - \( \exists \) integers \( i_w, i_r \) \( 0 \leq i_w, i_r \leq 5 \) \( i_w \neq i_r \) \( i_w + 1 = i_r \)
  - \( i_w \neq i_r \) is not an affine function
    - divide into 2 problems
    - Problem 1 with \( i_w < i_r \) and problem 2 with \( i_r < i_w \)
    - If either problem has a solution \( \rightarrow \) there exists a dependence
  - **How about \( i_w + 1 = i_r \)**
    - Add two inequalities to single problem
      - \( i_w + 1 \leq i_r \), and \( i_r \leq i_w + 1 \)
Integer Programming Formulation

- Problem 1

\[ 0 \leq i_w \]
\[ i_w \leq 5 \]
\[ 0 \leq i_r \]
\[ i_r \leq 5 \]
\[ i_w < i_r \]
\[ i_w + 1 \leq i_r \]
\[ i_r \leq i_w + 1 \]
Integer Programming Formulation

- Problem 1

\[ 0 \leq i_w \quad \Rightarrow \quad -i_w \leq 0 \]
\[ i_w \leq 5 \quad \Rightarrow \quad i_w \leq 5 \]
\[ 0 \leq i_r \quad \Rightarrow \quad -i_r \leq 0 \]
\[ i_r \leq 5 \quad \Rightarrow \quad i_r \leq 5 \]
\[ i_w < i_r \quad \Rightarrow \quad i_w - i_r \leq -1 \]
\[ i_w + 1 \leq i_r \quad \Rightarrow \quad i_w - i_r \leq -1 \]
\[ i_r \leq i_w + 1 \quad \Rightarrow \quad -i_w + i_r \leq 1 \]
Integer Programming Formulation

- **Problem 1**

  \[
  \begin{align*}
  0 & \leq i_w \quad \Rightarrow \quad -i_w &\leq 0 \\
  i_w &\leq 5 \quad \Rightarrow \quad i_w &\leq 5 \\
  0 &\leq i_r \quad \Rightarrow \quad -i_r &\leq 0 \\
  i_r &\leq 5 \quad \Rightarrow \quad i_r &\leq 5 \\
  i_w &< i_r \quad \Rightarrow \quad i_w - i_r &\leq -1 \\
  i_w + 1 &\leq i_r \quad \Rightarrow \quad i_w - i_r &\leq -1 \\
  i_r &\leq i_w + 1 \quad \Rightarrow \quad -i_w + i_r &\leq 1 
  \end{align*}
  \]

- **and problem 2 with** \(i_r < i_w\)

\[
\begin{pmatrix}
  -1 & 0 \\
  1 & 0 \\
  0 & -1 \\
  0 & 1 \\
  1 & -1 \\
  1 & -1 \\
  -1 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
  0 \\
  5 \\
  0 \\
  5 \\
  -1 \\
  -1 \\
  1
\end{pmatrix}
\]
Generalization

- An affine loop nest
  
  \[ \text{FOR } i_1 = f_{l1}(c_1...c_k) \text{ to } I_{u1}(c_1...c_k) \]
  
  \[ \text{FOR } i_2 = f_{l2}(i_1,c_1...c_k) \text{ to } I_{u2}(i_1,c_1...c_k) \]
  
  ..... 
  
  \[ \text{FOR } i_n = f_{ln}(i_1...i_{n-1},c_1...c_k) \text{ to } I_{un}(i_1...i_{n-1},c_1...c_k) \]
  
  \[ A[f_{a1}(i_1...i_n,c_1...c_k), f_{a2}(i_1...i_n,c_1...c_k), ..., f_{am}(i_1...i_n,c_1...c_k)] \]

- Solve 2*n problems of the form
  
  - \( i_1 = j_1, \ i_2 = j_2, \ldots \ i_{n-1} = j_{n-1}, \ i_n < j_n \)
  
  - \( i_1 = j_1, \ i_2 = j_2, \ldots \ i_{n-1} = j_{n-1}, \ j_n < i_n \)
  
  - \( i_1 = j_1, \ i_2 = j_2, \ldots \ i_{n-1} < j_{n-1} \)
  
  - \( i_1 = j_1, \ i_2 = j_2, \ldots \ j_{n-1} < i_{n-1} \)
  
  \[ \ldots \]
  
  - \( i_1 = j_1, \ i_2 < j_2 \)
  
  - \( i_1 = j_1, \ j_2 < i_2 \)
  
  - \( i_1 < j_1 \)
  
  - \( j_1 < i_1 \)
FOR I = 1 to n
    FOR J = 1 to n
Multi-Dimensional Dependence

FOR I = 1 to n
    FOR J = 1 to n

FOR I = 1 to n
    FOR J = 1 to n
What is the Dependence?

FOR $I = 1$ to $n$
    FOR $J = 1$ to $n$

FOR $I = 1$ to $n$
    FOR $J = 1$ to $n$
        $B[I] = B[I-1] + 1$
What is the Dependence?

FOR $I = 1$ to $n$
  FOR $J = 1$ to $n$

FOR $I = 1$ to $n$
  FOR $J = 1$ to $n$
What is the Dependence?

FOR I = 1 to n
  FOR J = 1 to n

FOR I = 1 to n
  FOR J = 1 to n
    B[I] = B[I-1] + 1
Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation
Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Interprocedural Parallelization
- Loop Transformations
- Granularity of Parallelism
Scalar Privatization

- **Example**

```c
 FOR i = 1 to n
 X = A[i] * 3;
 B[i] = X;
```

- Is there a loop carried dependence?
- What is the type of dependence?
Privatization

● Analysis:
  ■ Any anti- and output-loop-carried dependences

● Eliminate by assigning in local context

```
FOR i = 1 to n
 integer Xtmp;
 Xtmp = A[i] * 3;
 B[i] = Xtmp;
```

● Eliminate by expanding into an array

```
FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];
```
Privatization

- Need a final assignment to maintain the correct value after the loop nest

- Eliminate by assigning in local context

```c
FOR i = 1 to n
 integer Xtmp;
 Xtmp = A[i] * 3;
 B[i] = Xtmp;
 if(i == n) X = Xtmp
```

- Eliminate by expanding into an array

```c
FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];
 X = Xtmp[n];
```
Another Example

● How about loop-carried true dependences?

● Example

```
FOR i = 1 to n
 X = X + A[i];
```

● Is this loop parallelizable?
Reduction Recognition

- **Reduction Analysis:**
  - Only associative operations
  - The result is never used within the loop

- **Transformation**

  ```c
 Integer Xtmp[NUMPROC];
 Barrier();
 FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
 Xtmp[myPid] = Xtmp[myPid] + A[i];
 Barrier();
 If(myPid == 0) {
 FOR p = 0 to NUMPROC-1
 X = X + Xtmp[p];
 ...
Induction Variables

- **Example**

  ```
  FOR i = 0 to N
      A[i] = 2^i;
  ```

- **After strength reduction**

  ```
  t = 1
  FOR i = 0 to N
      A[i] = t;
      t = t*2;
  ```

- **What happened to loop carried dependences?**

- **Need to do opposite of this!**
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable
Array Privatization

- Similar to scalar privatization

- However, analysis is more complex
 - Array Data Dependence Analysis: Checks if two iterations access the same location
 - Array Data Flow Analysis: Checks if two iterations access the same value

- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension
Interprocedural Parallelization

- Function calls will make a loop unparallelizable
 - Reduction of available parallelism
 - A lot of inner-loop parallelism

- Solutions
 - Interprocedural Analysis
 - Inlining
Interprocedural Parallelization

- **Issues**
 - Same function reused many times
 - Analyze a function on each trace → Possibly exponential
 - Analyze a function once → unrealizable path problem

- **Interprocedural Analysis**
 - Need to update all the analysis
 - Complex analysis
 - Can be expensive

- **Inlining**
 - Works with existing analysis
 - Large code bloat → can be very expensive
Loop Transformations

- A loop may not be parallel as is
- Example

```plaintext
FOR i = 1 to N-1
    FOR j = 1 to N-1
```
Loop Transformations

- A loop may not be parallel as is

Example

\[
\begin{array}{c}
\text{FOR } i = 1 \text{ to } N-1 \\
\quad \text{FOR } j = 1 \text{ to } N-1 \\
\quad \quad A[i,j] = A[i,j-1] + A[i-1,j];
\end{array}
\]

- After loop Skewing

\[
\begin{array}{c}
\text{FOR } i = 1 \text{ to } 2*N-3 \\
\quad \text{FORPAR } j = \max(1,i-N+2) \text{ to } \min(i, N-1) \\
\quad \quad A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];
\end{array}
\]
Granularity of Parallelism

- Example
  ```c
  FOR i = 1 to N-1
    FOR j = 1 to N-1
  ```

- Gets transformed into
  ```c
  FOR i = 1 to N-1
    Barrier();
    FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    Barrier();
  ```

- Inner loop parallelism can be expensive
 - Startup and teardown overhead of parallel regions
 - Lot of synchronization
 - Can even lead to slowdowns
Granularity of Parallelism

● Inner loop parallelism can be expensive

● Solutions
 ■ Don’t parallelize if the amount of work within the loop is too small
 or
 ■ Transform into outer-loop parallelism
Outer Loop Parallelism

- **Example**

  ```
  FOR i = 1 to N-1
    FOR j = 1 to N-1
  ```

- **After Loop Transpose**

  ```
  FOR j = 1 to N-1
    FOR i = 1 to N-1
  ```

- **Get mapped into**

  ```
  Barrier();
  FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    FOR i = 1 to N-1
  Barrier();
  ```
Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation
Generating Transformed Loop Bounds

for \(i = 1 \) to \(n \) do
\[
X[i] = \ldots
\]
for \(j = 1 \) to \(i - 1 \) do
\[
\ldots = X[j]
\]

- Assume we want to parallelize the \(i \) loop

- What are the loop bounds?

- Use Projections of the Iteration Space
 - Fourier-Motzkin Elimination Algorithm

\[
\begin{aligned}
(p, i, j) & : 1 \leq i \leq n \\
& \quad 1 \leq j \leq i-1 \\
& \quad i = p
\end{aligned}
\]
for \(p = 2 \) to \(n \) do
\[
i = p
\]
for \(j = 1 \) to \(i - 1 \) do

\[
\begin{cases}
(p, i, j) & 1 \leq i \leq n \\
1 \leq j \leq i - 1 \\
i = p
\end{cases}
\]
Projections

for \(p = 2 \) to \(n \) do

\[i = p \]

for \(j = 1 \) to \(i - 1 \) do
Projections

\[\textbf{for} \ p = 2 \ \textbf{to} \ n \ \textbf{do}\]

\[i = p\]

\[\textbf{for} \ j = 1 \ \textbf{to} \ i - 1 \ \textbf{do}\]

\[p = \text{my_pid}()\]
\[\textbf{if} \ p \geq 2 \ \text{and} \ p \leq n \ \textbf{then}\]
\[i = p\]
\[\textbf{for} \ j = 1 \ \textbf{to} \ i - 1 \ \textbf{do}\]
Fourier Motzkin Elimination

1 \leq i \leq n
1 \leq j \leq i-1
i = p

- Project i \rightarrow j \rightarrow p

- Find the bounds of i
 1 \leq i
 j+1 \leq i
 p \leq i
 i \leq n
 i \leq p

i: max(1, j+1, p) to min(n, p)
i: p

- Eliminate i
 1 \leq n
 j+1 \leq n
 p \leq n
 1 \leq p
 j+1 \leq p
 p \leq p
 1 \leq j

- Eliminate redundant
 p \leq n
 1 \leq p
 j+1 \leq p
 1 \leq j

- Continue onto finding bounds of j
Fourier Motzkin Elimination

\[p \leq n \]
\[1 \leq p \]
\[j+1 \leq p \]
\[1 \leq j \]

- Find the bounds of \(j \)
 \[1 \leq j \]
 \[j \leq p - 1 \]

\(j \): 1 to \(p - 1 \)

- Eliminate \(j \)
 \[1 \leq p - 1 \]
 \[p \leq n \]
 \[1 \leq p \]

- Eliminate redundant
 \[2 \leq p \]
 \[p \leq n \]

- Find the bounds of \(p \)
 \[2 \leq p \]
 \[p \leq n \]

\(p \): 2 to \(n \)

\[p = \text{my_pid()} \]
if \(p \geq 2 \) and \(p \leq n \) then
 for \(j = 1 \) to \(p - 1 \) do
 \(i = p \)
Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation
Communication Code Generation

- **Cache Coherent Shared Memory Machine**
 - Generate code for the parallel loop nest

- **No Cache Coherent Shared Memory or Distributed Memory Machines**
 - Generate code for the parallel loop nest
 - Identify communication
 - Generate communication code
Identify Communication

● Location Centric
 ■ Which locations written by processor 1 is used by processor 2?
 ■ Multiple writes to the same location, which one is used?
 ■ Data Dependence Analysis

● Value Centric
 ■ Who did the last write on the location read?
 - Same processor → just read the local copy
 - Different processor → get the value from the writer
 - No one → Get the value from the original array
Last Write Trees (LWT)

- **Input**: Read access and write access(es)

```plaintext
for i = 1 to n do
  for j = 1 to n do
    A[j] = ...  
    ... = X[j-1]
```

- **Output**: a function mapping each read iteration to a write creating that value

\[i_w = i_r \]
\[j_w = j_r - 1 \]
The Combined Space

\[1 \leq i_{\text{recv}} \leq n \]
\[0 \leq j_{\text{recv}} \leq i_{\text{recv}} - 1 \]

the receive iterations

the last-write relation

computation decomposition for:

receive iterations

send iterations

Non-local communication

\[P_{\text{recv}} = i_{\text{recv}} \]

\[P_{\text{send}} = i_{\text{send}} \]

\[P_{\text{recv}} \neq P_{\text{send}} \]
for $i = 1$ to n do
 for $j = 1$ to n do
 $A[j] = ...$
 $... = X[j-1]$
Communication Loop Nests

Send Loop Nest

for $p_{send} = 1$ to $n - 1$ do
 $i_{send} = p_{send}$
 for $p_{recv} = i_{send} + 1$ to n do
 $i_{recv} = p_{recv}$
 for $j_{recv} = 1$ to $i_{recv} - 1$ do
 send $X[i_{send}]$ to iteration (i_{recv}, j_{recv}) in processor p_{recv}

Receive Loop Nest

for $p_{recv} = 2$ to n do
 $i_{recv} = p_{recv}$
 for $j_{recv} = 1$ to $i_{recv} - 1$ do
 $p_{send} = j_{recv}$
 $i_{send} = p_{send}$
 receive $X[i_{recv}]$ from iteration i_{send} in processor p_{send}
Merging Loops

Computation Send Recv

Iterations

Prof. Saman Amarasinghe, MIT.
if $p == 1$ then
 $X[p] = \ldots$
 for $pr = p + 1$ to n do
 send $X[p]$ to iteration (pr, p) in processor pr
if $p >= 2$ and $p <= n - 1$ then
 $X[p] = \ldots$
 for $pr = p + 1$ to n do
 send $X[p]$ to iteration (pr, p) in processor pr
 for $j = 1$ to $p - 1$ do
 receive $X[j]$ from iteration (j) in processor j
 $\ldots = X[j]$
if $p == n$ then
 $X[p] = \ldots$
 for $j = 1$ to $p - 1$ do
 receive $X[j]$ from iteration (j) in processor j
 $\ldots = X[j]$
Communication Optimizations

- Eliminating redundant communication
- Communication aggregation
- Multi-cast identification
- Local memory management
Summary

● Automatic parallelization of loops with arrays
 ■ Requires Data Dependence Analysis
 ■ Iteration space & data space abstraction
 ■ An integer programming problem

● Many optimizations that’ll increase parallelism

● Transforming loop nests and communication code generation
 ■ Fourier-Motzkin Elimination provides a nice framework