Please use the following citation format:

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms
Lecture 15

Cilk
Design and Analysis of Dynamic Multithreaded Algorithms

Bradley C. Kuszmaul

MIT Computer Science and Artificial Intelligence Laboratory

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul
Shared-Memory Multiprocessor

- **Symmetric multiprocessor (SMP)**
- **Cache-coherent nonuniform memory architecture (CC-NUMA)**
Cilk

A C language for dynamic multithreading with a provably good runtime system.

Platforms
- Sun UltraSPARC Enterprise
- SGI Origin 2000
- Compaq/Digital Alphaserver
- Intel Pentium SMP’s

Applications
- virus shell assembly
- graphics rendering
- n-body simulation
- ★ Socrates and Cilkchess

Cilk automatically manages low-level aspects of parallel execution, including protocols, load balancing, and scheduling.
Cilk is a **faithful** extension of C. A Cilk program’s **serial elision** is always a legal implementation of Cilk semantics. Cilk provides **no** new data types.
Dynamic Multithreading

The \textit{computation dag} unfolds dynamically.

```
cilk int fib (int n) {
  if (n<2) return (n);
  else {
    int x,y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x+y);
  }
}
```

“Processor oblivious.”
Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack space can be passed from parent to child, but not from child to parent. (Cilk also supports `malloc`.)

Views of stack

Cilk’s *cactus stack* supports several views in parallel.
Advanced Features

• Returned values can be incorporated into the parent frame using a delayed internal function called an \textit{inlet}:

\begin{verbatim}
int y;
inlet void foo (int x) {
 if (x > y) y = x;
}
...
spawn foo(bar(z));
\end{verbatim}

• Within an inlet, the \texttt{abort} keyword causes all other children of the parent frame to be terminated.

• The \texttt{SYNCHED} pseudovariable tests whether a \texttt{sync} would succeed.

• A Cilk library provides \textit{mutex locks} for atomicity.

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul
Debugging Support

The **Nondeterminator** debugging tool detects and localizes data-race bugs.

“Abelian” Cilk program → Input data set

Information localizing a data race.

FAIL Image removed due to copyright restrictions. Arnold Schwarzenegger.

PASS Every scheduling produces the same result.

A **data race** occurs whenever a thread modifies location and another thread, holding no locks in common, accesses the location simultaneously.
Outline

- Theory and Practice
- A Chess Lesson
- Fun with Algorithms
- Work Stealing
- Opinion & Conclusion
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]
Algorithmic Complexity Measures

$$T_P = \text{execution time on } P \text{ processors}$$

$$T_1 = \textit{work}$$

$$T_\infty = \textit{critical path}$$
Algorithmic Complexity Measures

$T_P = \text{execution time on } P \text{ processors}$

$T_1 = \text{work}$

$T_\infty = \text{critical path}$

Lower Bounds

• $T_P \geq T_1/P$

• $T_P \geq T_\infty$
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]

\[T_\infty = \text{critical path} \]

Lower Bounds

\[T_P \geq T_1 / P \]

\[T_P \geq T_\infty \]

\[T_1 / T_P = \text{speedup} \]

\[T_1 / T_\infty = \text{parallelism} \]
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with $T_P \leq T_1/P + T_\infty$.
Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution with $T_P \leq T_1/P + T_\infty$.

Proof. At each time step, …
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with $T_P \leq T_1/P + T_\infty$.

Proof. At each time step, if at least P tasks are ready, …
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with $T_P \leq \frac{T_1}{P} + T_\infty$.

Proof. At each time step, if at least P tasks are ready, execute P of them.
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with $T_P \leq T_1/P + T_\infty$.

Proof. At each time step, if at least P tasks are ready, execute P of them. If fewer than P tasks are ready, …
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with $T_P \leq T_1/P + T_\infty$.

Proof. At each time step, if at least P tasks are ready, execute P of them. If fewer than P tasks are ready, execute all of them.
Greedy Scheduling

Theorem [Graham & Brent]: There exists an execution with \(T_P \leq T_1/P + T_\infty \).

Proof. At each time step, if at least \(P \) tasks are ready, execute \(P \) of them. If fewer than \(P \) tasks are ready, execute all of them.

Corollary: Linear speed-up when \(P \leq T_1/T_\infty \).
Cilk Performance

Cilk’s “work-stealing” scheduler achieves

\[T_P = \frac{T_1}{P} + O(T_\infty) \] expected time (provably);

\[T_P \approx \frac{T_1}{P} + T_\infty \] time (empirically).

Near-perfect linear speedup if \(P \leq \frac{T_1}{T_\infty} \).

Instrumentation in Cilk provides accurate measures of \(T_1 \) and \(T_\infty \) to the user.

The average cost of a \textit{spawn} in Cilk-5 is only 2–6 times the cost of an ordinary C function call, depending on the platform.
Outline

• Theory and Practice
• A Chess Lesson
• Fun with Algorithms
• Work Stealing
• Opinion & Conclusion

Socrates 2.0 took 2nd place in the 1995 World Computer Chess Championship running on Sandia National Labs’ 1824-node Intel Paragon.

Socrates Normalized Speedup

\[T_P = T_\infty \]

\[T_P = \frac{T_1}{P} + T_\infty \]

\[\frac{T_1}{T_P} = \frac{T_1}{T_\infty} \]

measured speedup

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul
Socrates Speedup Paradox

Original program

\[T_{32} = 65 \text{ seconds} \]

\[T_{1} = 2048 \text{ seconds} \]

\[T_{\infty} = 1 \text{ second} \]

\[T_{32} = \frac{2048}{32} + 1 = 65 \text{ seconds} \]

\[T_{512} = \frac{2048}{512} + 1 = 5 \text{ seconds} \]

Proposed program

\[T'_{32} = 40 \text{ seconds} \]

\[T'_{1} = 1024 \text{ seconds} \]

\[T'_{\infty} = 8 \text{ seconds} \]

\[T'_{32} = \frac{1024}{32} + 8 = 40 \text{ seconds} \]

\[T'_{512} = \frac{1024}{512} + 8 = 10 \text{ seconds} \]
Outline

• Theory and Practice
• A Chess Lesson
• Fun with Algorithms
• Work Stealing
• Opinion & Conclusion
Matrix Multiplication

\[
C = \begin{pmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{21} & c_{22} & \cdots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
 b_{11} & b_{12} & \cdots & b_{1n} \\
 b_{21} & b_{22} & \cdots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}
\]

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
\]
Recursive Matrix Multiplication

Divide and conquer on \(n \times n \) matrices.

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \times \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A_{11}B_{11} & A_{11}B_{12} \\
A_{21}B_{11} & A_{21}B_{12}
\end{pmatrix} + \begin{pmatrix}
A_{12}B_{21} & A_{12}B_{22} \\
A_{22}B_{21} & A_{22}B_{22}
\end{pmatrix}
\]

8 multiplications of \((n/2) \times (n/2)\) matrices.
1 addition of \(n \times n\) matrices.
Matrix Multiplication in Cilk

\[C = AB \]

\[\text{cilk Mult(*C,*A,*B,n)} \]
\{ float T[n][n];
 \text{h base case & partition matrices i}
 \text{spawn Mult(C11,A11,B11,n/2);} \\
 \text{spawn Mult(C12,A11,B12,n/2);} \\
 \text{spawn Mult(C22,A21,B12,n/2);} \\
 \text{spawn Mult(C21,A21,B11,n/2);} \\
 \text{spawn Mult(T11,A12,B21,n/2);} \\
 \text{spawn Mult(T12,A12,B22,n/2);} \\
 \text{spawn Mult(T22,A22,B22,n/2);} \\
 \text{spawn Mult(T21,A22,B21,n/2);} \\
 \text{sync;}
 \text{spawn Add(C,T,n);} \\
 \text{sync;}
 \text{return;}
\}

\[C = C + T \]

(Coarsen base cases for efficiency.)

\[\text{cilk Add(*C,*T,n)} \]
\{ \text{h base case & partition matrices i}
 \text{spawn Add(C11,T11,n/2);} \\
 \text{spawn Add(C12,T12,n/2);} \\
 \text{spawn Add(C21,T21,n/2);} \\
 \text{spawn Add(C22,T22,n/2);} \\
 \text{sync;}
 \text{return;}
\}

© 2001-4 by Charles E. Leiserson and Bradley C. Kuszmaul
Analysis of Matrix Addition

cilk Add(*C,*T,n)
{
 if base case & partition matrices
 spawn Add(C11,T11,n/2);
 spawn Add(C12,T12,n/2);
 spawn Add(C21,T21,n/2);
 spawn Add(C22,T22,n/2);
 sync;
 return;
}

Work: \[A_1(n) = 4 \cdot A_1(n/2) + (1) \]
\[= (n^2) \]

Critical path: \[A_\infty(n) = A_\infty(n/2) + (1) \]
\[= (\lg n) \]

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul
Analysis of Matrix Multiplication

Work: \[M_1(n) = 8M_1(n/2) + (n^2) \]
\[= (n^3) \]

Critical path: \[M_\infty(n) = M_\infty(n/2) + (\lg n) \]
\[= (\lg^2 n) \]

Parallelism: \[\frac{M_1(n)}{M_\infty(n)} = (n^3/\lg^2 n) \]

For 1000 \(\£ \) 1000 matrices, parallelism \(\frac{1}{4} \) 10\(^7\).
In modern hierarchical-memory microprocessors, memory accesses are so expensive that minimizing storage often yields higher performance.
No-Temp Matrix Multiplication

cilk Mult2(*C,*A,*B,n
{
 // C = C + A * B
 h base case & partition matrices i
 spawn Mult2(C11,A11,B11,n/2);
 spawn Mult2(C12,A11,B12,n/2);
 spawn Mult2(C22,A21,B12,n/2);
 spawn Mult2(C21,A21,B11,n/2);
 sync;
 spawn Mult2(C21,A22,B21,n/2);
 spawn Mult2(C22,A22,B22,n/2);
 spawn Mult2(C12,A12,B22,n/2);
 spawn Mult2(C11,A12,B21,n/2);
 sync;
 return;
}

Saves space at the expense of critical path.
Analysis of No-Temp Multiply

Work: \(M_1(n) = (n^3) \)

Critical path: \(M_\infty(n) = 2 M_\infty(n/2) + (1) = (n) \)

Parallelism: \(\frac{M_1(n)}{M_\infty(n)} = (n^2) \)

For 1000 £ 1000 matrices, parallelism \(\frac{1}{4} \times 10^6 \). Faster in practice.
Ordinary Matrix Multiplication

\[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \]

IDEA: Spawn \(n^2 \) inner products in parallel. Compute each inner product in parallel.

Work: \((n^3) \)

Critical path: \((\lg n) \)

Parallelism: \((n^3/\lg n) \)

BUT, this algorithm exhibits poor locality and does not exploit the cache hierarchy of modern microprocessors.

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul
Outline

• Theory and Practice
• A Chess Lesson
• Fun with Algorithms
• Work Stealing
• Opinion & Conclusion
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

Return!
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

Return!
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul 45
Performance of Work-Stealing

Theorem: A work-stealing scheduler achieves an expected running time of

\[T_P \leq T_1/P + O(T_1) \]

on \(P \) processors.

Pseudoproof. A processor is either *working* or *stealing*. The total time all processors spend working is \(T_1 \). Each steal has a \(1/P \) chance of reducing the critical-path length by 1. Thus, the expected number of steals is \(O(PT_1) \). Since there are \(P \) processors, the expected time is \((T_1 + O(PT_1))/P = T_1/P + O(T_1) \).
Outline

• Theory and Practice
• A Chess Lesson
• Fun with Algorithms
• Work Stealing
• Opinion & Conclusion
Data Parallelism

- High level
- Intuitive
- Scales up

- Conversion costs
- Doesn’t scale down
- Antithetical to caches
- Two-source problem
- Performance from tuned libraries

Example:

\[C = A + B; \]
\[D = A - B; \]

6 memory references, rather than 4.
Message Passing

- Scales up
- No compiler support needed
- Large inertia
- Runs anywhere

- Coarse grained
- Protocol intensive
- Difficult to debug
- Two-source problem
- Performance from tuned libraries

Shared memory: harder

Distributed memory: easier
distributed memory

In-core: easier

Out-of-core: harder
Conventional (Persistent) Multithreading

- Scales up and down
- No compiler support needed
- Large inertia
- Evolutionary

- Clumsy
- No load balancing
- Coarse-grained control
- Protocol intensive
- Difficult to debug

Parallelism for *programs*, not *procedures*.
Dynamic Multithreading

- High-level linguistic support for fine-grained control and data manipulation.
- Algorithmic programming model based on work and critical path.
- Easy conversion from existing codes.
- Applications that scale up and down.
- Processor-oblivious machine model that can be implemented in an adaptively parallel fashion.
- Doesn’t support a “program model” of parallelism.
Current Research

- We are currently designing jCilk, a Java-based language that fuses dynamic and persistent multithreading in a single linguistic framework.
- A key piece of algorithmic technology is an adaptive task scheduler that guarantees fair and efficient execution.
- Hardware transactional memory appears to simplify thread synchronization and improve performance compared with locking.
- The Nondeterminator 3 will be the first parallel data-race detector to guarantee both efficiency and linear speed-up.
Cilk Contributors

<table>
<thead>
<tr>
<th>Kunal Agarwal</th>
<th>Bradley Kuszmaul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eitan Ben Amos</td>
<td>Charles E. Leiserson</td>
</tr>
<tr>
<td>Bobby Blumofe</td>
<td>Phil Lisiecki</td>
</tr>
<tr>
<td>Angelina Lee</td>
<td>Rob Miller</td>
</tr>
<tr>
<td>Ien Cheng</td>
<td>Harald Prokop</td>
</tr>
<tr>
<td>Mingdong Feng</td>
<td>Keith Randall</td>
</tr>
<tr>
<td>Jeremy Fineman</td>
<td>Bin Song</td>
</tr>
<tr>
<td>Matteo Frigo</td>
<td>Andy Stark</td>
</tr>
<tr>
<td>Michael Halbherr</td>
<td>Volker Strumpen</td>
</tr>
<tr>
<td>Chris Joerg</td>
<td>Yuli Zhou</td>
</tr>
</tbody>
</table>

...plus many MIT students and SourceForgers.

Image removed due to copyright restrictions. Silkworms.

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul 53
World Wide Web

Cilk source code, programming examples, documentation, technical papers, tutorials, and up-to-date information can be found at:

http://supertech.csail.mit.edu/cilk

Download CILK Today!
Research Collaboration

Cilk is now being used at many universities for teaching and research:

MIT, Carnegie-Mellon, Yale, Texas, Dartmouth Alabama, New Mexico, Tel Aviv, Singapore.

We need help in maintaining, porting, and enhancing Cilk’s infrastructure, libraries, and application code base. If you are interested, send email to:

cilk-support@supertech.lcs.mit.edu

Warning: We are not organized!
Cilk-5 Benchmarks

<table>
<thead>
<tr>
<th>Program</th>
<th>Size</th>
<th>T_1</th>
<th>T_∞</th>
<th>T_1/T_∞</th>
<th>T_1/T_S</th>
<th>T_S</th>
<th>T_1/T_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockedmul</td>
<td>1024</td>
<td>29.9</td>
<td>.0046</td>
<td>6783</td>
<td>1.05</td>
<td>4.29</td>
<td>7.0</td>
</tr>
<tr>
<td>notempmul</td>
<td>1024</td>
<td>29.7</td>
<td>.0156</td>
<td>1904</td>
<td>1.05</td>
<td>3.9</td>
<td>7.6</td>
</tr>
<tr>
<td>strassen</td>
<td>1024</td>
<td>20.2</td>
<td>.5662</td>
<td>36</td>
<td>1.01</td>
<td>3.54</td>
<td>5.7</td>
</tr>
<tr>
<td>queens</td>
<td>22</td>
<td>150.0</td>
<td>.0015</td>
<td>96898</td>
<td>0.99</td>
<td>18.8</td>
<td>8.0</td>
</tr>
<tr>
<td>cilksort*</td>
<td>4.1M</td>
<td>5.4</td>
<td>.0048</td>
<td>1125</td>
<td>1.21</td>
<td>0.9</td>
<td>6.0</td>
</tr>
<tr>
<td>knapsack</td>
<td>30</td>
<td>75.8</td>
<td>.0014</td>
<td>54143</td>
<td>1.03</td>
<td>9.5</td>
<td>8.0</td>
</tr>
<tr>
<td>lu</td>
<td>2048</td>
<td>155.8</td>
<td>.4161</td>
<td>374</td>
<td>1.02</td>
<td>20.3</td>
<td>7.7</td>
</tr>
<tr>
<td>cholesky*</td>
<td>1.02M</td>
<td>1427.0</td>
<td>3.4</td>
<td>420</td>
<td>1.25</td>
<td>208</td>
<td>6.9</td>
</tr>
<tr>
<td>heat</td>
<td>2M</td>
<td>62.3</td>
<td>.16</td>
<td>384</td>
<td>1.08</td>
<td>9.4</td>
<td>6.6</td>
</tr>
<tr>
<td>fft</td>
<td>1M</td>
<td>4.3</td>
<td>.002</td>
<td>2145</td>
<td>0.93</td>
<td>0.77</td>
<td>5.6</td>
</tr>
<tr>
<td>barnes-hut</td>
<td>65536</td>
<td>124.0</td>
<td>.15</td>
<td>853</td>
<td>1.02</td>
<td>16.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

All benchmarks were run on a Sun Enterprise 5000 SMP with 8 167-megahertz UltraSPARC processors. All times are in seconds, repeatable to within 10%.
Ease of Programming

<table>
<thead>
<tr>
<th></th>
<th>Original C</th>
<th>Cilk</th>
<th>SPLASH-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>lines</td>
<td>1861</td>
<td>2019</td>
<td>2959</td>
</tr>
<tr>
<td>diff lines</td>
<td>0</td>
<td>158</td>
<td>1098</td>
</tr>
<tr>
<td>T_1/T_8</td>
<td>1</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>T_1/T_S</td>
<td>1</td>
<td>1.024</td>
<td>1.099</td>
</tr>
<tr>
<td>T_S/T_8</td>
<td>1</td>
<td>7.3</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Barnes-Hut application for 64K particles running on a 167-MHz Sun Enterprise 5000.
ICFP Programming Contest

• An 8-person Cilk team won **FIRST PRIZE** in the 1998 Programming Contest sponsored by the International Conference on Functional Programming.

• Our Cilk “*Pousse*” program was undefeated among the 49 entries. (Half the entries were coded in C.)

• Parallelizing our program to run on 4 processors took less than 1% of our effort, but it gave us more than a $3.5\times$ performance advantage over our competitors.

• The ICFP Tournament Directors cited Cilk as “*the superior programming tool of choice for discriminating hackers.*”

• For details, see: http://supertech.lcs.mit.edu/~pousse
Whither Functional Programming?

We have had success using functional languages to generate high-performance portable C codes.

- **FFTW**: *The Fastest Fourier Transform in the West* [Frigo-Johnson 1997]: 2–5¢ vendor libraries.
- Divide-and-conquer strategy optimizes cache use.
- A special-purpose compiler written in Objective CAML optimizes FFT dag for each recursive level.
- At runtime, FFTW measures the performance of various execution strategies and then uses dynamic programming to determine a good execution plan.

http://theory.lcs.mit.edu/~fftw
Sacred Cow
Compiling Cilk

Cilk source → cilk2c

source-to-source translator

C post source → gcc

C compiler

gcc → Cilk RTS

Cilk RTS

object code → ld

linking loader

ld → binary

A makefile encapsulates the process.

cilk2c translates straight C code into identical C postsource.
Cilk’s Compiler Strategy

The \texttt{cilk2c} compiler generates two “clones” of each procedure:

- **fast clone** — serial, common-case code.
- **slow clone** — code with parallel bookkeeping.

- The \textit{fast clone} is always spawned, saving live variables on Cilk’s work deque (shadow stack).
- The \textit{slow clone} is resumed if a thread is stolen, restoring variables from the shadow stack.
- A check is made whenever a procedure returns to see if the resuming parent has been stolen.
Compiling `spawn` (Fast Clone)

Cilk source

```c
x = spawn fib(n-1);
frame->entry = 1;
frame->n = n;
push(frame);
```

C post-source

```c
x = fib(n-1);
if (pop() == FAILURE)
{ frame->x = x;
  frame->join--;
  h clean up & return
to scheduler i
}
```

Frame

- `entry`
- `join`
- `n`
- `x`
- `y`

Cilk deque

- `suspend parent`
- `run child`
- `resume parent remotely`
Compiling **sync** (Fast Clone)

Cilk source

C post-source

sync;

cilk2c

<table>
<thead>
<tr>
<th>SLOW</th>
<th>FAST</th>
<th>FAST</th>
<th>FAST</th>
<th>FAST</th>
</tr>
</thead>
</table>

No synchronization overhead in the fast clone!
void fib_slow(fib_frame *frame) {
 int n, x, y;
 switch (frame->entry) {
 case 1: goto L1;
 case 2: goto L2;
 case 3: goto L3;
 }

 frame->entry = 1;
 frame->n = n;
push(frame);
x = fib(n-1);
if (pop() == FAILURE) {
 frame->x = x;
 frame->join--;
 h clean up & return to scheduler
}
if (0) {
 L1:;
n = frame->n;
}
.
.
.
}

Cilk
deque

frame

entry

join

n

x

y

entry

join

restore

program

counter

same

as fast

clone

restore local

variables

if resuming

continue

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul 65
Breakdown of Work Overhead

<table>
<thead>
<tr>
<th>Processor</th>
<th>T₁/Tₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPS R10000</td>
<td>115ns</td>
</tr>
<tr>
<td>UltraSPARC I</td>
<td>113ns</td>
</tr>
<tr>
<td>Pentium Pro</td>
<td>78ns</td>
</tr>
<tr>
<td>Alpha 21164</td>
<td>27ns</td>
</tr>
</tbody>
</table>

Benchmark: fib on one processor.
cilk void Mergesort(int A[], int p, int r)
{
 int q;
 if (p < r)
 {
 q = (p+r)/2;
 spawn Mergesort(A,p,q);
 spawn Mergesort(A,q+1,r);
 sync;
 Merge(A,p,q,r); // linear time
 }
}

\[T_1(n) = 2 \ T_1(\frac{n}{2}) + (n) \]
\[T_\infty(n) \equiv T_\infty(\frac{n}{2^\infty 4}) \]
\[= (n) \]

Parallelism:
\[\frac{(n \ lg n)}{(n)} = (lg n) \]

© 2001–4 by Charles E. Leiserson and Bradley C. Kuszmaul 67
Parallel Merge

Recursive merge

Binary search

Recursive merge

\[T_1(n) = T_1(n) + T_1((1-\rho) n) + (\lg n), \text{ where } 1/4 \cdot \rho \cdot 3/4 = (n) \]

\[T_\infty(n) = T_\infty(3n/4) + (\lg n) = (\lg^2 n) \]
Parallel Mergesort

\[T_1(n) = 2 \cdot T_1(n/2) + (n) = (n \lg n) \]

\[T_\infty(n) = T_\infty(n/2) + (\lg^2 n) = (\lg^3 n) \]

Parallelism:
\[\frac{(n \lg n)}{(\lg^3 n)} = \frac{1}{(n/\lg^2 n)} \]

- Our implementation of this algorithm yields a 21% work overhead and achieves a 6 times speedup on 8 processors (saturating the bus).
- Parallelism of \((n/\lg n)\) can be obtained at the cost of increasing the work by a constant factor.
Student Assignment

Implement the fastest 1000 £ 1000 matrix-multiplication algorithm.

• **Winner:** A variant of *Strassen’s algorithm* which permuted the row-major input matrix into a bit-interleaved order before the calculation.

• **Losers:** Half the groups had *race bugs*, because they didn’t bother to run the Nondeterminator.

• **Learners:** Should have taught *high-performance C* programming first. The students spent most of their time optimizing the serial C code and little of their time Cilkifying it.
Caching Behavior

Cilk’s scheduler guarantees that \[\frac{Q_P}{P} \cdot \frac{Q_1}{P} + O(\frac{MT_\infty}{B}) \], where \(Q_P \) is the total number of cache faults on \(P \) processors, each with a cache of size \(M \) and cache-line length \(B \).

Divide-and-conquer “cache-oblivious” matrix multiplication has \[Q_1(n) = O(1 + n^3 / \sqrt{MB}) \], which is asymptotically optimal.

IDEA: Once a submatrix fits in cache, no further cache misses on its submatrices.