LECTURE OUTLINE

• The basic problem
• Principle of optimality
• DP example: Deterministic problem
• DP example: Stochastic problem
• The general DP algorithm
• State augmentation
BASIC PROBLEM

- System $x_{k+1} = f_k(x_k, u_k, w_k)$, $k = 0, \ldots, N - 1$
- Control constraints $u_k \in U_k(x_k)$
- Probability distribution $P_k(\cdot \mid x_k, u_k)$ of w_k
- Policies $\pi = \{\mu_0, \ldots, \mu_{N-1}\}$, where μ_k maps states x_k into controls $u_k = \mu_k(x_k)$ and is such that $\mu_k(x_k) \in U_k(x_k)$ for all x_k
- Expected cost of π starting at x_0 is

$$J_\pi(x_0) = E \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\}$$

- Optimal cost function

$$J^*(x_0) = \min_\pi J_\pi(x_0)$$

- Optimal policy π^* is one that satisfies

$$J_{\pi^*}(x_0) = J^*(x_0)$$
PRINCIPLE OF OPTIMALITY

• Let $\pi^* = \{\mu_0^*, \mu_1^*, \ldots, \mu_{N-1}^*\}$ be optimal policy
• Consider the “tail subproblem” whereby we are at x_i at time i and wish to minimize the “cost-to-go” from time i to time N

\[
E \left\{ g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\}
\]

and the “tail policy” $\{\mu_i^*, \mu_{i+1}^*, \ldots, \mu_{N-1}^*\}$

• **Principle of optimality:** The tail policy is optimal for the tail subproblem (optimization of the future does not depend on what we did in the past)
• DP first solves ALL tail subproblems of final stage
• At the generic step, it solves ALL tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length
DETERMINISTIC SCHEDULING EXAMPLE

- Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

![Diagram of deterministic scheduling example](image)

- Start from the last tail subproblem and go backwards
- At each state-time pair, we record the optimal cost-to-go and the optimal decision
STOCHASTIC INVENTORY EXAMPLE

Tail Subproblems of Length 1:

\[J_{N-1}(x_{N-1}) = \min_{u_{N-1} \geq 0} E \{ cu_{N-1} \]
\[+ r(x_{N-1} + u_{N-1} - w_{N-1}) \} \]

Tail Subproblems of Length \(N - k \):

\[J_k(x_k) = \min_{u_k \geq 0} E \{ cu_k + r(x_k + u_k - w_k) \]
\[+ J_{k+1}(x_k + u_k - w_k) \} \]

\(J_0(x_0) \) is opt. cost of initial state \(x_0 \)
DP ALGORITHM

• Start with

\[J_N(x_N) = g_N(x_N), \]

and go backwards using

\[J_k(x_k) = \min_{u_k \in U_k(x_k)} E \left\{ g_k(x_k, u_k, w_k) \right\} \]
\[+ J_{k+1}(f_k(x_k, u_k, w_k)) \], \quad k = 0, 1, \ldots, N - 1. \]

• Then \(J_0(x_0) \), generated at the last step, is equal to the optimal cost \(J^*(x_0) \). Also, the policy

\[\pi^* = \{ \mu_0^*, \ldots, \mu_{N-1}^* \} \]

where \(\mu_k^*(x_k) \) minimizes in the right side above for each \(x_k \) and \(k \), is optimal

• Justification: Proof by induction that \(J_k(x_k) \) is equal to \(J_k^*(x_k) \), defined as the optimal cost of the tail subproblem that starts at time \(k \) at state \(x_k \)

• Note:
 – ALL the tail subproblems are solved (in addition to the original problem)
 – Intensive computational requirements
PROOF OF THE INDUCTION STEP

• Let \(\pi_k = \{\mu_k, \mu_{k+1}, \ldots, \mu_{N-1}\} \) denote a tail policy from time \(k \) onward

• Assume that \(J_{k+1}(x_{k+1}) = J_{k+1}^*(x_{k+1}) \). Then

\[
J_k^*(x_k) = \min_{\mu_k, \pi_{k+1}} \mathbb{E} \left\{ g_k(x_k, \mu_k(x_k), w_k) \right\}
\]

\[
+ \min_{\pi_{k+1}} \mathbb{E} \left\{ g_N(x_N) + \sum_{i=k+1}^{N-1} g_i(x_i, \mu_i(x_i), w_i) \right\}
\]

\[
= \min_{\mu_k} \mathbb{E} \left\{ g_k(x_k, \mu_k(x_k), w_k) + J_{k+1}^* \left(f_k(x_k, \mu_k(x_k), w_k) \right) \right\}
\]

\[
= \min_{\mu_k} \mathbb{E} \left\{ g_k(x_k, \mu_k(x_k), w_k) + J_{k+1} \left(f_k(x_k, \mu_k(x_k), w_k) \right) \right\}
\]

\[
= \min_{u_k \in U_k(x_k)} \mathbb{E} \left\{ g_k(x_k, u_k, w_k) + J_{k+1} \left(f_k(x_k, u_k, w_k) \right) \right\}
\]

\[
= J_k(x_k)
\]
LINEAR-QUADRATIC ANALYTICAL EXAMPLE

- System

\[x_{k+1} = (1 - a)x_k + au_k, \quad k = 0, 1, \]

where \(a \) is given scalar from the interval \((0, 1)\)

- Cost

\[r(x_2 - T)^2 + u_0^2 + u_1^2 \]

where \(r \) is given positive scalar

- DP Algorithm:

\[J_2(x_2) = r(x_2 - T)^2 \]

\[J_1(x_1) = \min_{u_1} \left[u_1^2 + r((1 - a)x_1 + au_1 - T)^2 \right] \]

\[J_0(x_0) = \min_{u_0} [u_0^2 + J_1((1 - a)x_0 + au_0)] \]
STATE AUGMENTATION

• When assumptions of the basic problem are violated (e.g., disturbances are correlated, cost is nonadditive, etc) reformulate/augment the state

• DP algorithm still applies, but the problem gets BIGGER

• Example: Time lags

\[
x_{k+1} = f_k(x_k, x_{k-1}, u_k, w_k)
\]

• Introduce additional state variable \(y_k = x_{k-1}\). New system takes the form

\[
\begin{pmatrix}
 x_{k+1} \\
 y_{k+1}
\end{pmatrix} = \begin{pmatrix}
 f_k(x_k, y_k, u_k, w_k) \\
 x_k
\end{pmatrix}
\]

View \(\tilde{x}_k = (x_k, y_k)\) as the new state.

• DP algorithm for the reformulated problem:

\[
J_k(x_k, x_{k-1}) = \min_{u_k \in U_k(x_k)} \mathbb{E}_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, x_{k-1}, u_k, w_k), x_k) \right\}
\]