6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Examples of stochastic DP problems
• Linear-quadratic problems
• Inventory control
LINEAR-QUADRATIC PROBLEMS

• System: \(x_{k+1} = A_k x_k + B_k u_k + w_k \)

• Quadratic cost

\[
E_{w_k} \left\{ x_N' Q_N x_N + \sum_{k=0}^{N-1} \left(x_k' Q_k x_k + u_k' R_k u_k \right) \right\}
\]

where \(Q_k \geq 0 \) and \(R_k > 0 \) [in the positive (semi)definite sense].

• \(w_k \) are independent and zero mean

• DP algorithm:

\[
J_N(x_N) = x_N' Q_N x_N,
\]

\[
J_k(x_k) = \min_{u_k} E \left\{ x_k' Q_k x_k + u_k' R_k u_k + J_{k+1}(A_k x_k + B_k u_k + w_k) \right\}
\]

• Key facts:

 – \(J_k(x_k) \) is quadratic

 – Optimal policy \(\{\mu^*_0, \ldots, \mu^*_{N-1}\} \) is linear:

\[
\mu^*_k(x_k) = L_k x_k
\]

 – Similar treatment of a number of variants
DERIVATION

- By induction verify that

\[\mu^*_k(x_k) = L_k x_k, \quad J_k(x_k) = x'_k K_k x_k + \text{constant}, \]

where \(L_k \) are matrices given by

\[
L_k = -(B'_{k+1} K_{k+1} B_k + R_k)^{-1} B'_{k+1} K_{k+1} A_k,
\]

and where \(K_k \) are symmetric positive semidefinite matrices given by

\[
K_N = Q_N, \\
K_k = A'_k (K_{k+1} - K_{k+1} B_k (B'_{k+1} K_{k+1} B_k \\
+ R_k)^{-1} B'_{k+1} K_{k+1}) A_k + Q_k
\]

- This is called the discrete-time Riccati equation

- Just like DP, it starts at the terminal time \(N \) and proceeds backwards.

- Certainty equivalence holds (optimal policy is the same as when \(w_k \) is replaced by its expected value \(E\{w_k\} = 0 \)).
ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

- Assume stationary system and cost per stage, and technical assumptions: controlability of \((A, B)\) and observability of \((A, C)\) where \(Q = C'C\).

- The Riccati equation converges \(\lim_{k \to -\infty} K_k = K\), where \(K\) is pos. definite, and is the unique (within the class of pos. semidefinite matrices) solution of the algebraic Riccati equation

\[
K = A'(K - KB(B'KB + R)^{-1}B'K)A + Q
\]

- The optimal steady-state controller \(\mu^*(x) = Lx\)

\[
L = -(B'KB + R)^{-1}B'KA,
\]

is stable in the sense that the matrix \((A + BL)\) of the closed-loop system

\[
x_{k+1} = (A + BL)x_k + w_k
\]

satisfies \(\lim_{k \to \infty}(A + BL)^k = 0\).
• Riccati equation (with $P_k = K_{N-k}$):

$$P_{k+1} = A^2 \left(P_k - \frac{B^2 P_k^2}{B^2 P_k + R} \right) + Q,$$

or $P_{k+1} = F(P_k)$, where

$$F(P) = A^2 \left(P - \frac{B^2 P^2}{B^2 P + R} \right) + Q = \frac{A^2 R P}{B^2 P + R} + Q$$

• Note the two steady-state solutions, satisfying $P = F(P)$, of which only one is positive.
RANDOM SYSTEM MATRICES

- Suppose that \(\{A_0, B_0\}, \ldots, \{A_{N-1}, B_{N-1}\} \) are not known but rather are independent random matrices that are also independent of the \(w_k \).
- DP algorithm is

\[
J_N(x_N) = x_N' Q_N x_N,
\]

\[
J_k(x_k) = \min_{u_k, w_k, A_k, B_k} E \left\{ x_k' Q_k x_k + u_k' R_k u_k + J_{k+1}(A_k x_k + B_k u_k + w_k) \right\}
\]

- Optimal policy \(\mu_k^*(x_k) = L_k x_k \), where

\[
L_k = -\left(R_k + E\{B_k' K_{k+1} B_k\} \right)^{-1} E\{B_k' K_{k+1} \}
\]

and where the matrices \(K_k \) are given by

\[
K_N = Q_N,
\]

\[
K_k = E\{A_k' K_{k+1} A_k\} - E\{A_k' K_{k+1} B_k\} - (R_k + E\{B_k' K_{k+1} B_k\})^{-1} E\{B_k' K_{k+1} A_k\} + Q_k
\]
PROPERTIES

- Certainty equivalence may not hold
- Riccati equation may not converge to a steady-state

\[P_{k+1} = \tilde{F}(P_k), \]

where

\[
\tilde{F}(P) = \frac{E\{A^2\} R P}{E\{B^2\} P + R} + Q + \frac{TP^2}{E\{B^2\} P + R},
\]

\[
T = E\{A^2\} E\{B^2\} - (E\{A\})^2 (E\{B\})^2
\]
INVENTORY CONTROL

- x_k: stock, u_k: stock purchased, w_k: demand

$$x_{k+1} = x_k + u_k - w_k, \quad k = 0, 1, \ldots, N-1$$

- Minimize

$$E \left\{ \sum_{k=0}^{N-1} (cu_k + H(x_k + u_k)) \right\}$$

where

$$H(x + u) = E\{r(x + u - w)\}$$

is the expected shortage/holding cost, with r defined e.g., for some $p > 0$ and $h > 0$, as

$$r(x) = p \max(0, -x) + h \max(0, x)$$

- DP algorithm:

$$J_N(x_N) = 0,$$

$$J_k(x_k) = \min_{u_k \geq 0} \left[cu_k + H(x_k + u_k) + E\left\{ J_{k+1}(x_k + u_k - w_k) \right\} \right]$$
OPTIMAL POLICY

• DP algorithm can be written as $J_N(x_N) = 0$,

$$J_k(x_k) = \min_{u_k \geq 0} \left[cu_k + H(x_k + u_k) + E\left\{ J_{k+1}(x_k + u_k - w_k) \right\} \right]$$

$$= \min_{u_k \geq 0} G_k(x_k + u_k) - cx_k = \min_{y \geq x_k} G_k(y) - cx_k,$$

where

$$G_k(y) = cy + H(y) + E\{ J_{k+1}(y - w) \}$$

• If G_k is convex and $\lim_{|x| \to \infty} G_k(x) \to \infty$, we have

$$\mu^*_k(x_k) = \begin{cases} S_k - x_k & \text{if } x_k < S_k, \\ 0 & \text{if } x_k \geq S_k, \end{cases}$$

where S_k minimizes $G_k(y)$.

• This is shown, assuming that H is convex and $c < p$, by showing that J_k is convex for all k, and

$$\lim_{|x| \to \infty} J_k(x) \to \infty$$
JUSTIFICATION

- Graphical inductive proof that J_k is convex.