Monte Carlo Linear Algebra: A Review and Recent Results

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Caradache, France, 2012

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.
Monte Carlo Linear Algebra

An emerging field combining Monte Carlo simulation and algorithmic linear algebra

Plays a central role in approximate DP (policy iteration, projected equation and aggregation methods)

Advantage of Monte Carlo
Can be used to approximate sums of huge number of terms such as high-dimensional inner products

A very broad scope of applications
- Linear systems of equations
- Least squares/regression problems
- Eigenvalue problems
- Linear and quadratic programming problems
- Linear variational inequalities
- Other quasi-linear structures
Monte Carlo Estimation Approach for Linear Systems

We focus on solution of $Cx = d$

- **Use simulation** to compute $C_k \rightarrow C$ and $d_k \rightarrow d$
- Estimate the solution by **matrix inversion** $C_k^{-1}d_k \approx C^{-1}d$ (assuming C is invertible)
- Alternatively, solve $C_kx = d_k$ iteratively

Why simulation?

C may be of **small dimension**, but may be defined in terms of matrix-vector products of **huge dimension**

What are the main issues?

- Efficient **simulation design** that matches the structure of C and d
- Efficient and reliable **algorithm design**
- What to do when C is singular or nearly singular

Outline

1 Motivating Framework: Low-Dimensional Approximation
 - Projected Equations
 - Aggregation
 - Large-Scale Regression

2 Sampling Issues
 - Simulation for Projected Equations
 - Multistep Methods
 - Constrained Projected Equations

3 Solution Methods and Singularity Issues
 - Invertible Case
 - Singular and Nearly Singular Case
 - Deterministic and Stochastic Iterative Methods
 - Nullspace Consistency
 - Stabilization Schemes
Low-Dimensional Approximation

- Start from a high-dimensional equation \(y = Ay + b \)
- Approximate its solution within a subspace \(S = \{ \Phi x \mid x \in \mathbb{R}^s \} \)
- Columns of \(\Phi \) are basis functions

Equation approximation approach

Approximate solution \(y^* \) with the solution \(\Phi x^* \) of an equation defined on \(S \)

Important example: Projection/Galerkin approximation

\[
\Phi x = \Pi(A\Phi x + b)
\]

Galerkin approximation of equation

\[
y^* = Ay^* + b
\]

S: Subspace spanned by basis functions
Matrix Form of Projected Equation

Let Π be projection with respect to a weighted Euclidean norm $||y||_\Xi = \sqrt{y'\Xi y}$

The Galerkin solution is obtained from the orthogonality condition

$$\Phi x^* - (A\Phi x^* + b) \perp (\text{Columns of } \Phi)$$

or

$$Cx = d$$

where

$$C = \Phi'\Xi(I - A)\Phi, \quad d = \Phi'\Xi b$$

Motivation for simulation

If y is high-dimensional, C and d involve high-dimensional matrix-vector operations
Let D and Φ be matrices whose rows are probability distributions.

Aggregation equation

By forming convex combinations of variables (i.e., $y \approx \Phi x$) and equations (using D), we obtain an aggregate form of the fixed point problem $y = Ay + b$:

$$x = D(A\Phi x + b)$$

or $Cx = d$ with

$$C = DA\Phi, \quad d = Db$$

Connection with projection/Galerkin approximation

The aggregation equation yields

$$\Phi x = \Phi D(A\Phi x + b)$$

ΦD is an oblique projection in some of the most interesting types of aggregation [if $D\Phi = I$ so that $(\Phi D)^2 = \Phi D$].
Another Example: Large-Scale Regression

Weighted least squares problem

Consider

$$\min_{y \in \mathbb{R}^n} \| Wy - h \|_\Xi^2,$$

where W and h are given, $\| \cdot \|_\Xi$ is a weighted Euclidean norm, and y is high-dimensional.

We approximate y within the subspace $S = \{ \Phi x \mid x \in \mathbb{R}^s \}$, to obtain

$$\min_{x \in \mathbb{R}^s} \| W\Phi x - h \|_\Xi^2.$$

Equivalent linear system $Cx = d$

$$C = \Phi' W' \Xi W \Phi, \quad d = \Phi' W' \Xi h$$
Key Idea for Simulation

Critical Problem

Compute sums $\sum_{i=1}^{n} a_i$ for very large n (or $n = \infty$)

Convert Sum to an Expected Value

Introduce a sampling distribution ξ and write

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \xi_i \left(\frac{a_i}{\xi_i} \right) = E_{\xi}\{\hat{a}\}$$

where the random variable \hat{a} has distribution

$$P \left\{ \hat{a} = \frac{a_i}{\xi_i} \right\} = \xi_i, \quad i = 1, \ldots, n$$

1. We “invent” ξ to convert a “deterministic” problem to a “stochastic” problem that can be solved by simulation.
2. **Complexity advantage:** Running time is independent of the number n of terms in the sum, only the distribution of \hat{a}.
3. **Importance sampling idea:** Use a sampling distribution that matches the problem for efficiency (e.g., make the variance of \hat{a} small).
Row and Column Sampling for System $Cx = d$

Row Sampling According to ξ

- **Row sampling**: Generate sequence $\{i_0, i_1, \ldots\}$ according to ξ (the diagonal of Ξ), i.e., relative frequency of each row i is ξ_i

- **Column sampling**: Generate sequence $\{(i_0, j_0), (i_1, j_1), \ldots\}$ according to some transition probability matrix P with

$$p_{ij} > 0 \quad \text{if} \quad a_{ij} \neq 0,$$

i.e., for each i, the relative frequency of (i, j) is p_{ij}

- **Row sampling may be done using a Markov chain** with transition matrix Q (unrelated to P)

- **Row sampling may also be done without a Markov chain** - just sample rows according to some known distribution ξ (e.g., a uniform)
Approximation of C and d by simulation:

$$C = \Phi'\Xi(I - A)\Phi \sim C_k = \frac{1}{k+1} \sum_{t=0}^{k} \phi(i_t) \left(\phi(i_t) - \frac{a_{itj}t}{p_{ijt}}\phi(j_t)\right)',$$

$$d = \Phi'\Xi b \sim d_k = \frac{1}{k+1} \sum_{t=0}^{k} \phi(i_t)b_{it}$$

We have by law of large numbers $C_k \to C$, $d_k \to d$.

Equation approximation: Solve the equation $C_kx = d_k$ in place of $Cx = d$.

Algorithms

Matrix inversion approach: $x^* \approx C_k^{-1}d_k$ (if C_k is invertible for large k)

Iterative approach: $x_{k+1} = x_k - \gamma G_k(C_kx_k - d_k)$
Instead of solving (approximately) the equation $y = T(y) = Ay + b$, consider the multistep equivalent

$$y = T^{(\lambda)}(y)$$

where for $\lambda \in [0, 1)$

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^\ell T^{\ell+1}$$

- Special multistep sampling methods
- Bias-variance tradeoff
Constrained Projected Equations

Consider

\[\Phi x = \Pi T(\Phi x) = \Pi(A\Phi x + b) \]

where \(\Pi \) is the projection operation onto a closed convex subset \(\hat{S} \) of the subspace \(S \) (w/ respect to weighted norm \(|| \cdot ||_\Xi \); \(\Xi \): positive definite).

From the properties of projection,

\[(\Phi x^* - T(\Phi x^*))'\Xi(y - \Phi x^*) \geq 0, \quad \forall \, y \in \hat{S} \]

This is a linear variational inequality: Find \(x^* \) such that

\[f(\Phi x^*)'(y - \Phi x^*) \geq 0, \quad \forall \, y \in \hat{S}, \]

where \(f(y) = \Xi(y - T(y)) = \Xi(y - (Ay + b)) \).
Two equivalent problems

- The projected equation
 \[\Phi x = \Pi T(\Phi x) \]
 where \(\Pi \) is projection with respect to \(\| \cdot \|_\Xi \) on convex set \(\hat{S} \subset S \)

- The special-form VI
 \[f(\Phi x^*)' \Xi (x - x^*) \geq 0, \quad \forall x \in X, \]
 where
 \[f(y) = \Xi (y - T(y)), \quad X = \{ x \mid \Phi x \in \hat{S} \} \]

Special linear cases: \(T(y) = Ay + b \)

- \(\hat{S} = \mathbb{R}^n \): VI \(\iff \) \(f(\Phi x^*) = \Xi (\Phi x^* - T(\Phi x^*)) = 0 \) (linear equation)
- \(\hat{S} = \) subspace: VI \(\iff \) \(f(\Phi x^*) \perp \hat{S} \) (e.g., projected linear equation)
- \(f(y) \) the gradient of a quadratic, \(\hat{S} \): polyhedral (e.g., approx. LP and QP)
- Linear VI case (e.g., cooperative and zero-sum games with approximation)
Deterministic Solution Methods - Invertible Case of $Cx = d$

Matrix Inversion Method

$$x^* = C^{-1}d$$

Generic Linear Iterative Method

$$x_{k+1} = x_k - \gamma G(Cx_k - d)$$

where:
- G is a scaling matrix, $\gamma > 0$ is a stepsize
- Eigenvalues of $I - \gamma GC$ within the unit circle (for convergence)

Special cases:
- **Projection/Richardson’s method**: C positive semidefinite, G positive definite symmetric
- **Proximal** method (quadratic regularization)
- **Splitting/Gauss-Seidel** method
Motivating Framework: Low-Dimensional Approximation

Sampling Issues

Solution Methods and Singularity Issues

Simulation-Based Solution Methods - Invertible Case

Given sequences \(C_k \rightarrow C \) and \(d_k \rightarrow d \)

Matrix Inversion Method

\[
x_k = C_k^{-1} d_k
\]

Iterative Method

\[
x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)
\]

where:

- \(G_k \) is a scaling matrix with \(G_k \rightarrow G \)
- \(\gamma > 0 \) is a stepsize

\(x_k \rightarrow x^* \) if and only if the deterministic version is convergent
Solution Methods - Singular Case (Assuming a Solution Exists)

Given sequences $C_k \rightarrow C$ and $d_k \rightarrow d$. Matrix inversion method does not apply.

Iterative Method

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

Need not converge to a solution, even if the deterministic version does.

Questions:

- Under what conditions is the stochastic method convergent?
- How to modify the method to restore convergence?
Simulation-Based Solution Methods - Nearly Singular Case

The theoretical view

If C is nearly singular, we are in the nonsingular case

The practical view

If C is nearly singular, we are essentially in the singular case (unless the simulation is extremely accurate)

The eigenvalues of the iteration

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

get in and out of the unit circle for a long time (until the “size" of the simulation noise becomes comparable to the “stability margin" of the iteration)

Think of roundoff error affecting the solution of ill-conditioned systems (simulation noise is far worse)
Assume that C is invertible or singular (but $Cx = d$ has a solution)

Generic Linear Iterative Method

$$x_{k+1} = x_k - \gamma G(Cx_k - d)$$

Standard Convergence Result

Let C be singular and denote by $N(C)$ the nullspace of C. Then:

\{x_k\} is convergent (for all x_0 and sufficiently small γ) to a solution of $Cx = d$ if and only if:

(a) Each eigenvalue of GC either has a positive real part or is equal to 0.
(b) The dimension of $N(GC)$ is equal to the algebraic multiplicity of the eigenvalue 0 of GC.
(c) $N(C) = N(GC)$.
Proof Based on Nullspace Decomposition for Singular Systems

For any solution \(x^* \), rewrite the iteration as

\[
x_{k+1} - x^* = (I - \gamma GC)(x_k - x^*)
\]

Linearly transform the iteration

Introduce a similarity transformation involving \(\mathbf{N}(C) \) and \(\mathbf{N}(C)^\perp \):

Let \(U \) and \(V \) be orthonormal bases of \(\mathbf{N}(C) \) and \(\mathbf{N}(C)^\perp \):

\[
[U \ V]'(I - \gamma GC)[U \ V] = I - \gamma \begin{bmatrix} U'GCU & U'GCV \\ V'GCU & V'GCV \end{bmatrix} = I - \gamma \begin{bmatrix} 0 & U'GCV \\ 0 & V'GCV \end{bmatrix} \equiv \begin{bmatrix} I & -\gamma N \\ 0 & I - \gamma H \end{bmatrix},
\]

where \(H \) has eigenvalues with positive real parts. Hence for some \(\gamma > 0 \),

\[
\rho(I - \gamma H) < 1,
\]

so \(I - \gamma H \) is a contraction ...
Nullspace Decomposition of Deterministic Iteration

Figure: Iteration decomposition into components on \(N(C) \) and \(N(C)^\perp \).

\[
x_k = x^* + Uy_k + Vz_k
\]

- **Nullspace component:** \(y_{k+1} = y_k - \gamma Nz_k \)
- **Orthogonal component:** \(z_{k+1} = z_k - \gamma Hz_k \) \text{ CONTRACTIVE}
The stochastic iteration

\[x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k) \]

approaches the deterministic iteration

\[x_{k+1} = x_k - \gamma G (C x_k - d), \quad \text{where} \quad \rho(I - \gamma GC) \leq 1. \]

However, since

\[\rho(I - \gamma G_k C_k) \to 1 \]

\(\rho(I - \gamma G_k C_k) \) may cross above 1 too frequently, and we can have divergence.

Difficulty is that the orthogonal component is now coupled to the nullspace component with simulation noise.
Motivating Framework: Low-Dimensional Approximation

Sampling Issues

Solution Methods and Singularity Issues

Divergence of the Stochastic/Singular Iteration

Figure: NOISE LEAKAGE FROM $\mathbf{N}(C)$ to $\mathbf{N}(C)^\perp$

$$x_k = x^* + Uy_k + Vz_k$$

- Nullspace component: $y_{k+1} = y_k - \gamma Nz_k + \text{Noise}(y_k, z_k)$
- Orthogonal component: $z_{k+1} = z_k - \gamma Hz_k + \text{Noise}(y_k, z_k)$
Divergence Example for a Singular Problem

2 × 2 Example

Let the noise be \(\{ e_k \} \): MC averages with mean 0 so \(e_k \to 0 \), and let

\[
x_{k+1} = \begin{bmatrix} 1 + e_k & 0 \\ e_k & 1/2 \end{bmatrix} x_k
\]

- **Nullspace component** \(y_k = x_k(1) \) diverges:

\[
\prod_{t=1}^{k} (1 + e_t) = O(e^{\sqrt{k}}) \to \infty
\]

- **Orthogonal component** \(z_k = x_k(2) \) diverges:

\[
x_{k+1}(2) = 1/2x_k(2) + e_k \prod_{t=1}^{k} (1 + e_t),
\]

where

\[
e_k \prod_{t=1}^{k} (1 + e_t) = O\left(\frac{e^{\sqrt{k}}}{\sqrt{k}}\right) \to \infty.
\]
What Happens in Nearly Singular Problems?

- “Divergence” until Noise $<<$ “Stability Margin” of the iteration
- Compare with roundoff error problems in inversion of nearly singular matrices

A Simple Example

Consider the inversion of a scalar $c > 0$, with simulation error η. The absolute and relative errors are

$$E = \frac{1}{c + \eta} - \frac{1}{c}, \quad E_r = \frac{E}{1/c}.$$

By a Taylor expansion around $\eta = 0$:

$$E \approx \frac{\partial (1/(c + \eta))}{\partial \eta} \bigg|_{\eta=0} \eta = -\frac{\eta}{c^2}, \quad E_r \approx -\frac{\eta}{c}.$$

For the estimate $\frac{1}{c + \eta}$ to be reliable, it is required that

- $|\eta| << |c|$.
- Number of i.i.d. samples needed: $k \gg 1/c^2$.
Nullspace Consistent Iterations

Nullspace Consistency and Convergence of Residual

- If $N(G_k C_k) \equiv N(C)$, we say that the iteration is **nullspace-consistent**.
- Nullspace consistent iteration generates convergent residuals $(Cx_k - d \to 0)$, iff the deterministic iteration converges.

Proof Outline:

$$x_k = x^* + Uy_k + Vz_k$$

- **Nullspace component:**
 $$y_{k+1} = y_k - \gamma Nz_k + \text{Noise}(y_k, z_k)$$

- **Orthogonal component:**
 $$z_{k+1} = z_k - \gamma Hz_k + \text{Noise}(z_k) \quad \text{DECOUPLED}$$

LEAKAGE FROM $N(C)$ IS ANIHILATED by V so

$$Cx_k - d = CVz_k \to 0$$
Interesting Special Cases

Proximal/Quadratic Regularization Method

\[x_{k+1} = x_k - (C_k' C_k + \beta I)^{-1} C_k' (C_k x_k - d_k) \]

Can diverge even in the nullspace consistent case.

- In the nullspace consistent case, under favorable conditions \(x_k \to \) some solution \(x^* \).
- In these cases the nullspace component \(y_k \) stays constant.

Approximate DP (projected equation and aggregation)

The estimates often take the form

\[C_k = \Phi' M_k \Phi, \quad d_k = \Phi' h_k, \]

where \(M_k \to M \) for some positive definite \(M \).

- If \(\Phi \) has dependent columns, the matrix \(C = \Phi' M \Phi \) is singular.
- The iteration using such \(C_k \) and \(d_k \) is nullspace consistent.
- In typical methods (e.g., LSPE) \(x_k \to \) some solution \(x^* \).
Motivating Framework: Low-Dimensional Approximation

Stabilization of Divergent Iterations

A Stabilization Scheme

Shifting the eigenvalues of $I - \gamma G_k C_k$ by $-\delta_k$:

$$x_{k+1} = (1 - \delta_k)x_k - \gamma G_k (C_k x_k - d_k).$$

Convergence of Stabilized Iteration

Assume that the eigenvalues are shifted slower than the convergence rate of the simulation:

$$(C_k - C, d_k - d, G_k - G)/\delta_k \to 0,$$

$$\sum_{k=0}^{\infty} \delta_k = \infty$$

Then the stabilized iteration generates $x_k \to$ some x^* iff the deterministic iteration without δ_k does.

- Stabilization is interesting even in the nonsingular case
- It provides a form of “regularization"
Stabilization of the Earlier Divergent Example

(i) \[\delta_k = k^{-1/3} \]

(ii) \[\delta_k = 0 \]
Thank You!