Problem Set 8\footnote{Posted November 19, 2003. Due date November 26, 2003}

Problem 8.1

Autonomous system equations have the form

\[\ddot{y}(t) = \begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}' Q \begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}, \]

(8.1)

where \(y \) is the scalar output, and \(Q = Q' \) is a given symmetric 2-by-2 matrix with real coefficients.

(a) Find all \(Q \) for which there exists a \(C^\infty \) bijection \(\psi : \mathbb{R}^2 \mapsto \mathbb{R}^2 \), matrices \(A, C, \) and a \(C^\infty \) function \(\phi : \mathbb{R} \mapsto \mathbb{R}^2 \) such that \(z = \psi(y, \dot{y}) \) satisfies the ODE

\[\dot{z}(t) = Az(t) + \phi(y(t)), \quad y(t) = Cz(t) \]

whenever \(y(\cdot) \) satisfies (8.1).

(b) For those \(Q \) found in (a), construct \(C^\infty \) functions \(F = F_Q : \mathbb{R}^2 \times \mathbb{R} \mapsto \mathbb{R}^2 \) and \(H = H_Q : \mathbb{R}^2 \mapsto \mathbb{R} \) such that \(H_Q(\eta(t)) - \dot{y}(t) \to 0 \) as \(t \to \infty \) whenever \(y : [0, \infty) \mapsto \mathbb{R} \) is a solution of (8.1), and

\[\dot{\eta}(t) = F_Q(\eta(t), y(t)). \]
Problem 8.2

A linear control system
\[
\begin{cases}
\dot{x}_1(t) &= x_2(t) + w_1(t), \\
\dot{x}_2(t) &= -x_1(t) - x_2(t) + u + w_2(t)
\end{cases}
\]
is equipped with the nonlinear sensor
\[y(t) = x_1(t) + \sin(x_2(t)) + w_3(t), \]
where \(w_i(\cdot) \) represent plant disturbances and sensor noise satisfying a uniform bound \(|w_i(t)| \leq d \). Design an observer of the form
\[\dot{\eta}(t) = F(\eta(t), y(t), u(t)) \]
and constants \(d_0 > 0 \) and \(C > 0 \) such that
\[|\eta(t) - x(t)| \leq Cd \quad \forall \ t \geq 0 \]
whenever \(\eta(0) = x(0) \) and \(d < d_0 \). (Try to make \(d_0 \) as large as possible, and \(C \) as small as possible.)

Problem 8.3

Is it true or false that the set \(\Omega = \Omega_F = \{ P \} \) of positive definite quadratic forms \(V_P (\bar{x}) = \bar{x}'P\bar{x} \), where \(P = P' > 0 \), which are valid control Lyapunov function for a given ODE model
\[\dot{x}(t) = F(x(t), u(t)), \]
in the sense that
\[\inf_{\bar{u} \in \mathbb{R}} \bar{x}'P F(\bar{x}, \bar{u}) \leq -|\bar{x}|^2 \quad \forall \bar{x} \in \mathbb{R}^n, \]
is linearly connected for all continuously differentiable functions \(F : \mathbb{R}^n \times \mathbb{R} \mapsto \mathbb{R}^n \)? (Remember that a set \(\Omega \) of matrices is called linearly connected if for every two matrices \(P_0, P_1 \in \Omega \) there exists a continuous function \(p : [0, 1] \mapsto \Omega \) such that \(p(0) = P_0 \) and \(p(1) = P_1 \). In particular, the empty set is linearly connected.)