Problem: \(\min_{x \in X} f(x) \), where:

(a) \(X \subset \mathbb{R}^n \) is nonempty, convex, and closed.
(b) \(f \) is continuously differentiable over \(X \).

- Local and global minima. If \(f \) is convex local minima are also global.
Proposition (Optimality Condition)

(a) If \(x^* \) is a local minimum of \(f \) over \(X \), then

\[
\nabla f(x^*)' (x - x^*) \geq 0, \quad \forall \ x \in X.
\]

(b) If \(f \) is convex over \(X \), then this condition is also sufficient for \(x^* \) to minimize \(f \) over \(X \).

At a local minimum \(x^* \), the gradient \(\nabla f(x^*) \) makes an angle less than or equal to 90 degrees with all feasible variations \(x - x^* \), \(x \in X \).

Illustration of failure of the optimality condition when \(X \) is not convex. Here \(x^* \) is a local min but we have \(\nabla f(x^*)' (x - x^*) < 0 \) for the feasible vector \(x \) shown.
Proof: (a) Suppose that \(\nabla f(x^*)' (x - x^*) < 0 \) for some \(x \in X \). By the Mean Value Theorem, for every \(\epsilon > 0 \) there exists an \(s \in [0, 1] \) such that

\[
f(x^* + \epsilon(x - x^*)) = f(x^*) + \epsilon \nabla f(x^* + s\epsilon(x - x^*))' (x - x^*).
\]

Since \(\nabla f \) is continuous, for suff. small \(\epsilon > 0 \),

\[
\nabla f(x^* + s\epsilon(x - x^*))' (x - x^*) < 0
\]

so that \(f(x^* + \epsilon(x - x^*)) < f(x^*) \). The vector \(x^* + \epsilon(x - x^*) \) is feasible for all \(\epsilon \in [0, 1] \) because \(X \) is convex, so the local optimality of \(x^* \) is contradicted.

(b) Using the convexity of \(f \)

\[
f(x) \geq f(x^*) + \nabla f(x^*)' (x - x^*)
\]

for every \(x \in X \). If the condition \(\nabla f(x^*)' (x - x^*) \geq 0 \) holds for all \(x \in X \), we obtain \(f(x) \geq f(x^*) \), so \(x^* \) minimizes \(f \) over \(X \). Q.E.D.
OPTIMIZATION SUBJECT TO BOUNDS

- Let $X = \{ x \mid x \geq 0 \}$. Then the necessary condition for $x^* = (x_1^*, \ldots, x_n^*)$ to be a local min is

$$ \sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \geq 0, \quad \forall x_i \geq 0, \, i = 1, \ldots, n. $$

- Fix i. Let $x_j = x_j^*$ for $j \neq i$ and $x_i = x_i^* + 1$:

$$ \frac{\partial f(x^*)}{\partial x_i} \geq 0, \quad \forall i. $$

- If $x_i^* > 0$, let also $x_j = x_j^*$ for $j \neq i$ and $x_i = \frac{1}{2} x_i^*$. Then $\frac{\partial f(x^*)}{\partial x_i} \leq 0$, so

$$ \frac{\partial f(x^*)}{\partial x_i} = 0, \quad \text{if} \, x_i^* > 0. $$
OPTIMIZATION OVER A SIMPLEX

\[X = \left\{ x \mid x \geq 0, \sum_{i=1}^{n} x_i = r \right\} \]

where \(r > 0 \) is a given scalar.

• Necessary condition for \(x^* = (x^*_1, \ldots, x^*_n) \) to be a local min:

\[
\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x^*_i) \geq 0, \quad \forall x_i \geq 0 \text{ with } \sum_{i=1}^{n} x_i = r.
\]

• Fix \(i \) with \(x^*_i > 0 \) and let \(j \) be any other index. Use \(x \) with \(x_i = 0, x_j = x^*_j + x^*_i, \) and \(x_m = x^*_m \) for all \(m \neq i, j \):

\[
\left(\frac{\partial f(x^*)}{\partial x_j} - \frac{\partial f(x^*)}{\partial x_i} \right) x^*_i \geq 0,
\]

\[x^*_i > 0 \quad \Rightarrow \quad \frac{\partial f(x^*)}{\partial x_i} \leq \frac{\partial f(x^*)}{\partial x_j}, \quad \forall j. \]
OPTIMAL ROUTING

- Given a data net, and a set W of OD pairs $w = (i, j)$. Each OD pair w has input traffic r_w.

- Optimal routing problem:

$$
\text{minimize } D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\text{all paths } p \text{ containing } (i,j)} x_p \right)
$$

subject to

$$
\sum_{p \in P_w} x_p = r_w, \quad \forall \ w \in W,
$$

$$
x_p \geq 0, \quad \forall \ p \in P_w, \ w \in W
$$

- Optimality condition

$$
x_p^* > 0 \quad \Rightarrow \quad \frac{\partial D(x^*)}{\partial x_p} \leq \frac{\partial D(x^*)}{\partial x_{p'}}, \quad \forall \ p' \in P_w.
$$

TRAFFIC ASSIGNMENT

- Transportation network with OD pairs w. Each w has paths $p \in P_w$ and traffic r_w. Let x_p be the flow of path p and let $T_{ij}\left(\sum_p: \text{crossing } (i,j) x_p\right)$ be the travel time of link (i, j).

- User-optimization principle: Traffic equilibrium is established when each user of the network chooses, among all available paths, a path requiring minimum travel time, i.e., for all $w \in W$ and paths $p \in P_w$,

\[x_p^* > 0 \implies t_p(x^*) \leq t_{p'}(x^*), \quad \forall p' \in P_w, \forall w \in W \]

where $t_p(x)$, is the travel time of path p

\[t_p(x) = \sum_{\text{all arcs } (i,j) \text{ on path } p} T_{ij}(F_{ij}), \quad \forall p \in P_w, \forall w \in W. \]

Identical with the optimality condition of the routing problem if we identify the arc travel time $T_{ij}(F_{ij})$ with the cost derivative $D'_{ij}(F_{ij})$.
PROJECTION OVER A CONVEX SET

• Let $z \in \mathbb{R}^n$ and a closed convex set X be given. Problem:

 minimize $f(x) = \|z - x\|^2$

 subject to $x \in X$.

Proposition (Projection Theorem) Problem has a unique solution $[z]^+$ (the projection of z).

Necessary and sufficient condition for x^* to be the projection. The angle between $z - x^*$ and $x - x^*$ should be greater or equal to 90 degrees for all $x \in X$, or $(z - x^*)'(x - x^*) \leq 0$

• If X is a subspace, $z - x^* \perp X$.

• The mapping $f : \mathbb{R}^n \leftrightarrow X$ defined by $f(x) = [x]^+$ is continuous and nonexpansive, that is,

 $$\|[x]^+ - [y]^+\| \leq \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$