Problem 1

(a) Show that a nonpolyhedral closed convex cone need not be retractive, by using as an example the cone $C = \{(u, v, w) \mid \|(u, v)\| \leq w\}$, the recession direction $d = (1, 0, 1)$, and the corresponding asymptotic sequence $\{(k, \sqrt{k}, \sqrt{k^2 + k})\}$. (This is the, so-called, second order cone, which plays an important role in conic programming; see Chapter 5.)

(b) Verify that the cone C of part (a) can be written as the intersection of an infinite number of closed halfspaces, thereby showing that a nested set sequence obtained by intersection of an infinite number of retractive nested set sequences need not be retractive.

Solution.

(a) Clearly, $d = (1, 0, 1)$ is the recession direction associated with the asymptotic sequence $\{x_k\}$, where $x_k = (k, \sqrt{k}, \sqrt{k^2 + k})$. On the other hand, it can be verified by straightforward calculation that the vector

$$x_k - d = (k - 1, \sqrt{k}, \sqrt{k^2 + k} - 1)$$

does not belong to C. Indeed, denoting

$$u_k = k - 1, \quad v_k = \sqrt{k}, \quad w_k = \sqrt{k^2 + k} - 1,$$

we have

$$\|(u_k, v_k)\|^2 = (k - 1)^2 + k = k^2 - k + 1,$$

while

$$w_k^2 = (\sqrt{k^2 + k} - 1)^2 = k^2 + k + 1 - 2\sqrt{k^2 + k},$$

and it can be seen that

$$\|(u_k, v_k)\|^2 > w_k^2, \quad \forall \ k \geq 1.$$

(b) Since by the Schwarz inequality, we have

$$\max_{\|(x,y)\|=1} (ux + vy) = \|(u, v)\|,$$

it follows that the cone

$$C = \{(u, v, w) \mid \|(u, v)\| \leq w\}$$

can be written as

$$C = \cap_{\|(x,y)\|=1} \{(u, v, w) \mid ux + vy \leq w\}.$$

Hence C is the intersection of an infinite number of closed halfspaces.
Problem 2

Let C be a nonempty convex set in \mathbb{R}^n, and let M be a nonempty affine set in \mathbb{R}^n. Show that $M \cap \text{rin}(C) = \emptyset$ is a necessary and sufficient condition for the existence of a hyperplane H containing M, and such that $\text{rin}(C)$ is contained in one of the open halfspaces associated with H.

Solution.

If there exists a hyperplane H with the properties stated, the condition $M \cap \text{rin}(C) = \emptyset$ clearly holds. Conversely, if $M \cap \text{rin}(C) = \emptyset$, then M and C can be properly separated. This hyperplane can be chosen to contain M since M is affine. If this hyperplane contains a point in $\text{rin}(C)$, then it must contain all of C. This contradicts the proper separation property, thus showing that $\text{rin}(C)$ is contained in one of the open halfspaces.
Problem 3

Let \(C_1 \) and \(C_2 \) be nonempty convex subsets of \(\mathbb{R}^n \), and let \(B \) denote the unit ball in \(\mathbb{R}^n \), \(B = \{ x \mid \|x\| \leq 1 \} \). A hyperplane \(H \) is said to separate strongly \(C_1 \) and \(C_2 \) if there exists an \(\epsilon > 0 \) such that \(C_1 + \epsilon B \) is contained in one of the open halfspaces associated with \(H \) and \(C_2 + \epsilon B \) is contained in the other. Show that:

(a) The following three conditions are equivalent.
 (i) There exists a hyperplane separating strongly \(C_1 \) and \(C_2 \).
 (ii) There exists a vector \(\alpha \in \mathbb{R}^n \) such that \(\inf_{x \in C_1} \alpha'x > \sup_{x \in C_2} \alpha'x \).
 (iii) \(\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 0 \), i.e., \(0 \notin \text{cl}(C_2 - C_1) \).

(b) If \(C_1 \) and \(C_2 \) are disjoint, any one of the five conditions for strict separation, given in Prop. 1.5.3, implies that \(C_1 \) and \(C_2 \) can be strongly separated.

Solution.
(a) We first show that (i) implies (ii). Suppose that \(C_1 \) and \(C_2 \) can be separated strongly. By definition, this implies that for some nonzero vector \(a \in \mathbb{R}^n \), \(b \in \mathbb{R} \), and \(\epsilon > 0 \), we have

\[
\begin{align*}
C_1 + \epsilon B &\subset \{ x \mid a'x > b \}, \\
C_2 + \epsilon B &\subset \{ x \mid a'x < b \},
\end{align*}
\]

where \(B \) denotes the closed unit ball. Since \(a \neq 0 \), we also have

\[
\inf \{ a'y \mid y \in B \} < 0, \quad \sup \{ a'y \mid y \in B \} > 0.
\]

Therefore, it follows from the preceding relations that

\[
\begin{align*}
b &\leq \inf \{ a'x + \epsilon a'y \mid x \in C_1, y \in B \} < \inf \{ a'x \mid x \in C_1 \}, \\
b &\geq \sup \{ a'x + \epsilon a'y \mid x \in C_2, y \in B \} > \sup \{ a'x \mid x \in C_2 \}.
\end{align*}
\]

Thus, there exists a vector \(a \in \mathbb{R}^n \) such that

\[
\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,
\]

proving (ii).

Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector \(a \in \mathbb{R}^n \) such that

\[
\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,
\]

Using the Schwartz inequality, we see that

\[
\begin{align*}
0 &< \inf_{x \in C_1} a'x - \sup_{x \in C_2} a'x \\
&= \inf_{x_1 \in C_1, x_2 \in C_2} a'(x_1 - x_2), \\
&\leq \inf_{x_1 \in C_1, x_2 \in C_2} \|a\| \|x_1 - x_2\|.
\end{align*}
\]

It follows that

\[
\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 0,
\]

thus proving (iii). Finally, we show that (iii) implies (i). If (iii) holds, we have for some \(\epsilon > 0 \),

\[
\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 2\epsilon > 0.
\]
From this we obtain for all $x_1 \in C_1$, all $x_2 \in C_2$, and for all y_1, y_2 with $\|y_1\| \leq \epsilon$, $\|y_2\| \leq \epsilon$,
\[
\|(x_1 + y_1) - (x_2 + y_2)\| \geq \|x_1 - x_2\| - \|y_1\| - \|y_2\| > 0,
\]
which implies that $0 \notin (C_1 + \epsilon B) - (C_2 + \epsilon B)$. Therefore, the convex sets $C_1 + \epsilon B$ and $C_2 + \epsilon B$ are disjoint. By the Separating Hyperplane Theorem, we see that $C_1 + \epsilon B$ and $C_2 + \epsilon B$ can be separated, i.e., $C_1 + \epsilon B$ and $C_2 + \epsilon B$ lie in opposite closed halfspaces associated with the hyperplane that separates them. Then, the sets $C_1 + (\epsilon/2)B$ and $C_2 + (\epsilon/2)B$ lie in opposite open halfspaces, which by definition implies that C_1 and C_2 can be separated strongly.

(b) Since C_1 and C_2 are disjoint, we have $0 \notin (C_1 - C_2)$. Any one of conditions (2)-(5) of Prop. 1.5.3 imply condition (1) of that proposition, which states that the set $C_1 - C_2$ is closed, i.e.,
\[
cl(C_1 - C_2) = C_1 - C_2.
\]
Hence, we have $0 \notin cl(C_1 - C_2)$, which implies that
\[
\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 0.
\]
From part (a), it follows that there exists a hyperplane separating C_1 and C_2 strongly.
Problem 4

We say that a function \(f : \mathbb{R}^n \to (-\infty, \infty] \) is \textit{quasiconvex} if all its level sets

\[
V_\gamma = \{ x \mid f(x) \leq \gamma \}
\]

are convex. Let \(X \) be a convex subset of \(\mathbb{R}^n \), let \(f \) be a quasiconvex function such that \(X \cap \text{dom}(f) \neq \emptyset \), and denote \(f^* = \inf_{x \in X} f(x) \).

(a) Assume that \(f \) is not constant on any line segment of \(X \), i.e., we do not have \(f(x) = c \) for some scalar \(c \) and all \(x \) in the line segment connecting any two distinct points of \(X \). Show that every local minimum of \(f \) over \(X \) is also global.

(b) Assume that \(X \) is closed, and \(f \) is closed and proper. Let \(\Gamma \) be the set of all \(\gamma > f^* \), and denote

\[
R_f = \bigcap_{\gamma \in \Gamma} R_\gamma, \quad L_f = \bigcap_{\gamma \in \Gamma} L_\gamma,
\]

where \(R_\gamma \) and \(L_\gamma \) are the recession cone and the lineality space of \(V_\gamma \), respectively. Use the line of proof of Prop. 3.2.4 to show that \(f \) attains a minimum over \(X \) if any one of the following conditions holds:

1. \(R_X \cap R_f = L_X \cap L_f \).
2. \(R_X \cap R_f \subset L_f \), and \(X \) is a polyhedral set.

Solution.

(a) Let \(x^* \) be a local minimum of \(f \) over \(X \) and assume, to arrive at a contradiction, that there exists a vector \(\bar{x} \in X \) such that \(f(\bar{x}) < f(x^*) \). Then, \(\bar{x} \) and \(x^* \) belong to the set \(X \cap V_{\gamma^*} \), where \(\gamma^* = f(x^*) \). Since this set is convex, the line segment connecting \(x^* \) and \(\bar{x} \) belongs to the set, implying that

\[
f(\alpha \bar{x} + (1 - \alpha)x^*) \leq \gamma^* = f(x^*), \quad \forall \alpha \in [0, 1].
\]

For each integer \(k \geq 1 \), there must exist an \(\alpha_k \in (0, 1/k] \) such that

\[
f(\alpha_k \bar{x} + (1 - \alpha_k)x^*) < f(x^*), \quad \text{for some } \alpha_k \in (0, 1/k]
\]

otherwise, we would have that \(f(x) \) is constant for \(x \) on the line segment connecting \(x^* \) and \((1/k) \bar{x} + (1 - (1/k)) x^* \). This contradicts the local optimality of \(x^* \).

(b) We consider the level sets

\[
V_\gamma = \{ x \mid f(x) \leq \gamma \}
\]

for \(\gamma > f^* \). Let \(\{ \gamma_k \} \) be a scalar sequence such that \(\gamma_k \downarrow f^* \). Using the fact that for two nonempty closed convex sets \(C \) and \(D \) such that \(C \subset D \), we have \(R_C \subset R_D \), it can be seen that

\[
R_f = \bigcap_{\gamma \in \Gamma} R_\gamma = \bigcap_{k=1}^\infty R_{\gamma_k}.
\]

Similarly, \(L_f \) can be written as

\[
L_f = \bigcap_{\gamma \in \Gamma} L_\gamma = \bigcap_{k=1}^\infty L_{\gamma_k}.
\]

Under each of the conditions (1) and (2), we will show that the set of minima of \(f \) over \(X \), which is given by

\[
X^* = \bigcap_{k=1}^\infty (X \cap V_{\gamma_k})
\]

is nonempty.

Let condition (1) hold. The sets \(X \cap V_{\gamma_k} \) are nonempty, closed, convex, and nested. Furthermore, for each \(k \), their recession cone is given by \(R_X \cap R_{\gamma_k} \) and their lineality space is given by \(L_X \cap L_{\gamma_k} \). We have that

\[
\bigcap_{k=1}^\infty (R_X \cap R_{\gamma_k}) = R_X \cap R_f,
\]

and
and

$$\bigcap_{k=1}^{\infty} (L_X \cap L_{\gamma_k}) = L_X \cap L_f,$$

while by assumption $R_X \cap R_f = L_X \cap L_f$. Then it follows that X^* is nonempty.

Let condition (2) hold. The sets V_{γ_k} are nested and the intersection $X \cap V_{\gamma_k}$ is nonempty for all k. We also have by assumption that $R_X \cap R_f \in L_f$ and X is a polyhedral set. It follows that X^* is nonempty.
Problem 5

Let $F : \mathbb{R}^{n+m} \to (-\infty, \infty]$ be a closed proper convex function of two vectors $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$, and let

$$X = \left\{ x \mid \inf_{z \in \mathbb{R}^m} F(x, z) < \infty \right\}.$$

Assume that the function $F(x, \cdot)$ is closed for each $x \in X$. Show that:

(a) If for some $\bar{x} \in X$, the minimum of $F(\bar{x}, \cdot)$ over \mathbb{R}^m is attained at a nonempty and compact set, the same is true for all $x \in X$.

(b) If the functions $F(x, \cdot)$ are differentiable for all $x \in X$, they have the same asymptotic slopes along all directions, i.e., for each $d \in \mathbb{R}^m$, the value of $\lim_{\alpha \to \infty} \nabla_z F(x, z + \alpha d)'d$ is the same for all $x \in X$ and $z \in \mathbb{R}^m$.

Solution.

The recession cone of F has the form

$$R_F = \{(d_x, d_z) \mid (d_x, d_z, 0) \in R_{epi}(F)\}.$$

The (common) recession cone of the nonempty level sets of $F(x, \cdot)$, $x \in X$, has the form

$$\{d_z \mid (0, d_z) \in R_F\},$$

for all $x \in X$, where R_F is the recession cone of F. Furthermore, the recession function of $F(x, \cdot)$ is the same for all $x \in X$.

(a) By the compactness hypothesis, the recession cone of $F(\bar{x}, \cdot)$ consists of just the origin, so the same is true for the recession cones of all $F(x, \cdot)$, $x \in X$. Thus the nonempty level sets of $F(x, \cdot)$, $x \in X$, are all compact.

(b) This is a consequence of the fact that the recession function of $F(x, \cdot)$ is the same for all $x \in X$, and the comments following Prop. 1.4.5