Lecture 21

Optimal Routing

Eytan Modiano
Optimal Routing

• View routing as a “global” optimization problem

• Assumptions:
 – The cost of using a link is a function of the flow on that link
 – The total network cost is the sum of the link costs
 – The required traffic rate between each source-destination pair is known in advance
 – Traffic between source-destination pair can be split along multiple paths with infinite precision

• Find the paths (and associated traffic flows) along which to route all of the traffic such that the total cost is minimized
Formulation of optimal routing

- Let $D_{ij} (f_{ij})$ be the cost function for using link (i,j) with flow f_{ij}
 - F_{ij} is the total traffic flow along link (i,j)
 - $D_{ij}()$ can represent delay or queue size along the link
 - Assume D_{ij} is a differentiable function

- Let $D(F)$ be the total cost for the network with flow vector F

- Assume additive cost: $D(F) = \sum_{(ij)} D_{ij} (f_{ij})$

- For S-D pair w with total rate r_w
 - P_w is the set of paths between S and D
 - X_p is the rate sent along path $p \in P_w$

\[S.t. \quad \sum_{p \in P_w} X_p = r_w, \quad \forall w \in W \quad \quad f_{ij} = \sum_{all \ p \ containing \ (i,j)} X_p \]
Formulation continued

- Optimal routing problem can now be written as:

\[
\begin{align*}
\min & \quad D(F) \\
\text{subject to} & \quad \sum_{p \in P_w} X_p = r_w, \quad \forall w \in W
\end{align*}
\]

\[
\Rightarrow \quad \min \sum_{(i,j)} D_{(i,j)} \left[\sum_{p \text{contains } (i,j)} X_p \right] \quad \text{s.t.} \quad \sum_{p \in P_w} X_p = r_w, \quad \forall w \in W
\]
Optimal routing solution

- Let $dD(*)/dx_p$ be the partial derivative of D with respect to X_p

- Then,

- $D'_{xp} = dD(*)/dx_p = \sum_{(i,j) \in p} D'_{(i,j)}$

 - Where $D'_{(i,j)}$ is evaluated at the total flow corresponding to x_p

- D'_{xp} consists of first derivative lengths along path p
Optimal routing solution continued

• Suppose now that $X^* = \{x^*_p\}$ is an optimal flow vector for some S-D pair w with paths P_w

• Any shift in traffic from any path p to some other path p' cannot possibly decrease the total cost (since X^* is assumed optimal)

• Define Δ as the change in cost due to a shift of a small amount of traffic (δ) from some path p with $x^*_p > 0$ to another path p'

$$\Delta = \delta \frac{\partial D(X^*)}{\partial x_p} - \delta \frac{\partial D(X^*)}{\partial x_{p'}} \geq 0 \Rightarrow \frac{\partial D(X^*)}{\partial x_{p'}} \geq \frac{\partial D(X^*)}{\partial x_p}, \forall p' \in P_w$$

• Optimality conditions (necessary and sufficient):
 - optimal flows can only be positive on paths with minimum first derivative lengths
 - All paths along which r_w is split must have same first derivative lengths
Example
Example, continued
Routing in the Internet

• **Autonomous systems (AS)**
 – Internet is divided into AS’s each under the control of a single authority

• **Routing protocol can be classified in two categories**
 – Interior protocols - operate within an AS
 – Exterior protocols - operate between AS’s

• **Interior protocols**
 – Typically use shortest path algorithms
 Distance vector - based on distributed Bellman-ford
 Link state protocols - Based on “distributed” Dijkstra’s
Distance vector protocols

• Based on distributed Bellman-Ford
 – Nodes exchange routing table information with their neighbors

• Examples:
 – **Routing information protocols (RIP)**
 Metric used is hop-count \((d_{ij}=1) \)
 Routing information exchanged every 30 seconds

 – **Interior Gateway Routing Protocol (IGRP)**
 CISCO proprietary
 Metric takes load into account
 \(D_{ij} \sim 1/(\mu-\lambda) \) (estimate delay through link)
 Update every 90 seconds
 Multi-path routing capability
Link State Protocols

- Based on Dijkstra’s Shortest path algorithm
 - Avoids loops
 - Routers monitor the state of their outgoing links
 - Routers broadcast the state of their links within the AS
 - Every node knows the status of all links and can calculate all routes using Dijkstra’s algorithm
 - Nonetheless, nodes only send packet to the next node along the route with the packets destination address. The next node will look-up the address in the routing table.

- Example: Open Shortest Path First (OSPF) commonly used in the internet

- Link State protocols typically generate less “control” traffic than Distance-vector
Inter-Domain routing

• Used to route packets across different AS’s

• Options:
 – Static routing - manually configured routes
 – Distance-vector routing
 Exterior Gateway Protocol (EGP)
 Border Gateway Protocol (BGP)

• Issues
 – What cost “metric” to use for Distance-Vector routing
 Policy issues: Network provider A may not want B’s packets routed through its network or two network providers may have an agreement
 Cost issues: Network providers may charge each other for delivery of packets
Bridges, Routers and Gateways

• A Bridge is used to connect multiple LAN segments
 – Layer 2 routing (Ethernet)
 – Does not know IP address
 – Varying levels of sophistication
 Simple bridges just forward packets
 smart bridges start looking like routers

• A Router is used to route connect between different networks using network layer address
 – Within or between Autonomous Systems
 – Using same protocol (e.g., IP, ATM)

• A Gateway connects between networks using different protocols
 – Protocol conversion
 – Address resolution

• These definitions are often mixed and seem to evolve!