First, let’s take a moment to further explore device matching for current mirrors:

\[I_0 = I_R \]

\[Q_1 \]

\[Q_2 \]

and ask what happens when \(Q_1 \) and \(Q_2 \) operate at different temperatures. It turns out that grinding through the math doesn’t yield a great deal of insight:

\[
\frac{I_1}{I_2} = \frac{I_{S1}}{I_{S2}} \exp \left[\frac{qV_{BE}}{kT_1} \right] = \frac{I_{S1}}{I_{S2}} \exp \left[\frac{qV_{BE}}{k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right]
\]

We must consider, too that the saturation currents \(I_s \) are temperature-dependent as well. It turns out that \(I_s \) can be written

\[
I_s = \frac{T^\gamma}{E} \exp \left(-\frac{qV_{GB}}{kT} \right)
\]

Where \(E, \gamma \) are constants and \(V_{GB} \) is the bandgap voltage. All I can say here is that if \(Q_1 \) and \(Q_2 \) are at different temperatures, \(I_1 \neq I_2 \). End of story.
Next, let’s take a moment to consider carefully a (true) statement that Prof. Roberge has made in
class in previous semesters. I can’t quote him exactly, but he said something like:

“When transistors are run at low collector currents, they tend to have low \(f_T \) s.”

What does this mean? Well, \(f_T \) concerns the result of the following experiment:

We ask ourselves, what is the frequency at which the current gain \(\left| \frac{i_o}{i_i} \right| \) falls to unity? That frequency is called the "\(f_T \)" of transistor, and is given by the expression

\[
f_T = \frac{1}{2\pi \frac{g_m}{C_x + C_\mu}}
\]

People quote this number as a general indication of how “fast” a transistor is. Generally speaking, it will be easier to design a high-bandwidth amplifier using a transistor with a higher, rather than lower \(f_T \). Note that since the output is short-circuited, the Miller effect never comes into play. This causes \(C_x \) and \(C_\mu \) to be treated equally for the sake of \(f_T \), but we know that for real voltage amplifiers \(C_\mu \) can be more painful.
Looking at this expression, we can express parts of it in terms of the collector current I_C.

$$g_m = \frac{I_C}{V_T}$$

$$C_x = g_m \tau_F + C_{je}$$

$$= \frac{I_C}{V_T} \tau_F + C_{je}$$

$$f_T = \frac{1}{2\pi} \frac{I_C}{\tau_F V_T + C_{je} + C_{\mu}}$$

We see that in the limit of $I_C \to 0$, $f_T \to 0$, while in the limit of $I_C \to \infty$, $f_T \to \frac{1}{2\pi \tau_F}$. Below is a sketch of f_T vs. I_C as predicted by this simple theory; next to it is a graph from a measured device.

Simple Theory

Reality (β_F tends to decay at high currents.)

Now, at last on to the class exercise.
CLASS EXERCISE

Consider the simple op-amp shown below. Which is the inverting input, and which is the non-inverting input?

This is a seemingly simple exercise, but tracing things through helps you begin to understand how these things are put together.

Now, notice that the input stage is loaded with a current mirror. We know, based on our knowledge of the “simple” current mirror, that \(I_1 \) and \(I_2 \) are related by

\[
I_2 = \frac{I_1}{1 + \frac{2}{\beta}}
\]

If the two inputs are the same (the differential input voltage is zero), \(I_1 = I_3 \). This means that \(I_3 \neq I_2 \)...which means trouble? Fortunately not. This is one of those cases where the designer relies on the op-amp being in a feedback connection. Take, for example, a follower:
In the op-amp on the last page, we expect $I_2 < I_3$ for zero differential input. Connected as above, though, this would drive the output, and therefore the inverting input, low. When the inverting input is drawn low, it causes I_2 to increase. The system quickly equilibrates to $I_2 \approx I_3$, and if we measure the voltages we might measure something like:

Particularly in ICs it is not uncommon to implement an entire op-amp in a single stage. There are many tricks for getting a lot of gain. It is sometimes useful to use cascoding to establish very high-impedance nodes.
Input stage that could be used for very high gain:

This concept is more commonly used with MOSFETS, especially in situations when you expect to drive a purely capacitive load.