Convergence of Random Variables

1 Review of Definitions

Let \(X_i, i = 1, \ldots \), be a collection of random variables. The sample space on which \(X_i \) is defined will be denoted by \(\Omega_i \). Let \(X \) be a random variable on a sample space \(\Omega \). We will consider ways to make meaning of the statement “\(X_i \) converges to \(X \).”

The two following definitions assume \(\Omega = \Omega_1 = \Omega_2 = \cdots \).

Almost sure convergence. We will say that \(X_i \) converges to \(X \) almost surely if \(X_i(\omega) \) approaches \(X(\omega) \) for all \(\omega \in \Omega \), except possibly in a set of measure zero.

Convergence in probability. We will say that \(X_i \) converges to \(X \) in probability if \(P(|X_i - X| > \epsilon) \) approaches 0 as \(i \) goes to infinity, for any \(\epsilon > 0 \).

The next definition does not require \(\Omega_i \) to be identical.

Convergence in distribution. We will say that \(X_i \) converges to \(X \) in distribution if the function \(F_{X_i} \) converges to the function \(F_X \) at all points where \(F_X \) is continuous.

2 The relationship between convergence almost surely and convergence in probability

Theorem. Suppose \(X_i \) converges to \(X \) almost surely. Then, \(X_i \) converges to \(X \) in probability.

Proof. Fix \(\epsilon > 0 \). Define \(A_n(\epsilon) \) to be the set where \(X_n \) differs from \(X \) by at least \(\epsilon \):

\[
A_n(\epsilon) = \{ w \in \Omega : |X_n(w) - X(w)| > \epsilon \}
\]
Let $A(\epsilon)$ be the set of ω which are in some $A_n(\epsilon)$ infinitely often:

$$A(\epsilon) = \cap_{k=1}^{\infty} \cup_{n=k}^{\infty} A_n(\epsilon).$$

If $\omega \in A(\epsilon)$, then $X_n(\omega)$ cannot converge to $X(\omega)$; this means that $A(\epsilon)$ is a subset of a set of measure 0, and therefore

$$P(A(\epsilon)) = 0.$$

However, $A(\epsilon)$ is the intersection of a decreasing sequence of sets; applying the continuity of probability,

$$\lim_{k \to \infty} P(\cup_{n=k}^{\infty} A_n(\epsilon)) = 0$$

Since $A_k \subset \cup_{n=k}^{\infty} A_n(\epsilon)$, this implies

$$\lim_{k \to \infty} P(A_k(\epsilon)) = 0,$$

which means that X_k converges to X in probability. \(\square\)

Remark: The converse of the above theorem is not true. Suppose X_i converges to X in probability. It may be that X_i does not approach X almost surely.

Indeed, let X_n be the random variable which takes value 1 with probability $1/n$, and value 0 with probability $1-1/n$. Let X be the random variable that identically zero. We have that X_n converges to X in probability:

$$P(|X_n - X| > \epsilon) \leq \frac{1}{n},$$

for any positive ϵ. As n approaches infinity, $P(|X_n - X| > \epsilon)$ will approach zero.

On the other hand, by the Borel-Cantelli lemma, $X_n = 1$ infinitely often with probability 1, so that $P(A(\epsilon)) = 1$ for any ϵ. If X_n approached X almost surely, then we would have $P(A(\epsilon)) = 0$.

3 The relationship between convergence in probability and convergence in distribution

Theorem. Suppose X_i converges to X in probability. Then X_i converges to X in distribution.
Proof: Let $F_i(x)$ denote the distribution function of X_i and $F(x)$ denote the distribution function of X. We can write

\[
F_n(x) = P(X_n \leq X) = P(X_n \leq X, X \leq x + \epsilon) + P(X_n \leq x, X > x + \epsilon)
\leq F(x + \epsilon) + P(|X_n - X| > \epsilon).
\]

This inequality holds for all n and ϵ. It gives us an upper bound on F_n in terms of F. To obtain a lower bound, we argue as:

\[
F(x - \epsilon) = P(X \leq x - \epsilon) = P(X \leq x - \epsilon, X_n \leq x) + P(X \leq x - \epsilon, X_n > x)
\leq F_n(x) + P(|X_n - X| > \epsilon)
\]

The last part can be rewritten as

\[
F_n(x) \geq F(x - \epsilon) - P(|X_n - X| > \epsilon).
\]

Let us now combine the upper and lower bounds:

\[
F(x - \epsilon) + P(|X_n - X| > \epsilon) \leq F_n(x) \leq F(x + \epsilon) + P(|X_n - X| > \epsilon).
\]

Again, note this equation holds for all ϵ and for all n. Let us take the limit of both sides as n approaches infinity, and then as $\epsilon \to 0$; we obtain that if F is continuous at x, then

\[
\lim_{n} F_n(x) = F(x).
\]

\[\square\]

Remark: The converse of this theorem does not hold. Indeed, even assuming X_i approach X in distribution, they may not even be defined on the same space.

We can, however, refine the question as follows. Suppose X_i approach X in distribution and $\Omega = \Omega_1 = \Omega_2 = \cdots$. Will it always be true that X_i approach X in probability?

The answer is no. This was discussed in class: suppose X, X_1, X_2, \ldots are all independent $N(0, 1)$ Gaussians. Certainly, X_i converges to X in distribution, since all the distributions are equal. However, $X_i - X = N(0, 2)$, which does not become concentrated around 0 as i grows.
4 Some special cases

We now catalog some special cases when stronger statements can be made about the relationship between various types of convergence.

Theorem: Suppose X_i converges to X in probability. Then there exists a sequence of integers n_1, n_2, \ldots such that X_{n_i} converges to X almost surely.

Proof: We know that $P(|X_k - X| > \frac{1}{i})$ approaches 0 as k approaches ∞; pick n_i with the property that

$$P(|X_{n_i} - X| > \frac{1}{i}) < \frac{1}{i^2}.$$

Let A_i be the event that $|X_{n_i} - X| > 1/i$ and let A be the event “A_i occurs infinitely often.” Note that X_{n_i} converges to X on A^c. But the Borel-Cantelli lemma says that the probability of A is zero.

Theorem: Suppose X_i converges to a constant c in distribution. Then, X_i converges to X in probability.

Remark: Observe that since the constant random variable can be defined on any space, we do not run into problems when writing expressions like $P(|X_i - c| > \epsilon)$.

Proof: We have that

$$P(|X_i - c| > \epsilon) = P(X_i > c + \epsilon) + P(X_i < c - \epsilon) \leq (1 - F_i(c + \epsilon)) + F_i(c - \epsilon).$$

We know that $F_i(x)$ converges to the function $1_{[c, +\infty)}(x)$ for all $x \neq c$. This means that $F_i(c + \epsilon)$ approaches 1 and $F_i(c - \epsilon)$ approaches 0 as i approaches infinity. Thus $P(|X_i - c| > \epsilon)$ is sandwiched between 0 and a sequence that approaches 0 as i approaches infinity; therefore, it must approach zero.
6.436J / 15.085J Fundamentals of Probability
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.