LECTURE 6

Last time:

• Kraft inequality
• optimal codes.

Lecture outline

• Huffman codes

Reading: Scts. 5.5-5.7.
Kraft inequality

Any instantaneous code C with code lengths l_1, l_2, \ldots, l_m must satisfy

$$\sum_{i=1}^{m} D^{-l_i} \leq 1$$

Conversely, given lengths l_1, l_2, \ldots, l_m that satisfy the above inequality, there exists and instantaneous code with these codeword lengths

How do we achieve such a code in a practical fashion?

Make frequent elements short and infrequent one longer.
Huffman codes

Definition: let \mathcal{X} be a set of m source symbols, let \mathcal{D} be a D-ary alphabet. A Huffman code

$C_{Huff} : \mathcal{X} \mapsto \mathcal{D}^*$ is an optimum instantaneous code in which the $2^{+((m-2)\mod(D-1))}$ least likely source symbols have the same length and differ only in the last digit

Proposition: for any set of source symbols \mathcal{X} with m symbols, it is possible define a Huffman code for those source symbols

Consider a binary code:

reorder the x_i in terms of decreasing probability

the two least likely symbols are x_{m-1}, x_m
Huffman codes for binary D

For the code C to be optimal, $l(x_i) \geq l(x_j)$ for $i \geq j$

for every maximal length codeword $C(x_i)$ there must a codeword $C(x_j)$ that differs only in the last bit -otherwise erase one bit while still satisfying prefix condition

to satisfy that $C(x_m)$ and $C(x_{m-1})$ differ only in the last bit: find x_i such that $C(x_m)$ and $C(x_i)$ differ only in the last bit and if $x_i \neq x_m$, swap them

repeat with code for symbols x_1, \ldots, x_{m-2}
How do we construct them?

Find the $q = 2 + ((m-2)mod(D-1))$ least likely source symbols x_m, \ldots, x_{m-q+1}

Delete these symbols from the set of source symbols and replace them with a single symbol y_{m-q}

Assign $p(y_{m-q}) = \sum_{i=m-q}^{m} p(x_i)$

Now we have new set of symbols \mathcal{X}'

Construct a code $C_{Huff,m-q} : \mathcal{X}' \mapsto \mathcal{D}^*$

Note: could be using arbitrary weight function instead of probability
Why does this work?

Illustrate for binary
Why does this work?

Amalgamation is not always least likely event in \mathcal{X}'
Why does this work?

Two questions arise:

Why is it enough to now find a Huffman code $C_{Huff,m-q}$?

Where does the $q = 2 + ((m-2) \mod (D-1))$ come from?

Add one more letter for the q symbols x_m, \ldots, x_{m-q} with respect to $C_{Huff,m-q}$

Average length of code is average length of $C_{Huff,m-q}$, plus $p(y_{m-q}) = \sum_{i=m-q}^{m} p(x_i)$

Could we have done better by taking some unused node in $C_{Huff,m-q}$ to represent some of the x_m, \ldots, x_{m-q}? We’ll see that this is not possible and it is related to the first question.
Complete trees

Definition: a complete code tree is a finite code tree in which each intermediate node has D nodes of the next higher order stemming from it.

In a complete tree the Kraft inequality is satisfied with equality.
Complete trees

The number of terminal nodes in a complete code tree with alphabet size D must be of the form $D + n(D - 1)$

Smallest complete tree has D terminal nodes

When we replace a terminal node by an intermediate node, we lose one terminal node and gain D more, for a net gain of $D - 1$
Optimal codes and complete trees

Optimal code can be seen as a complete tree with some number B of unused terminal nodes

By contradiction, if there are incomplete intermediate nodes, nodes of higher order could complete intermediate nodes without adverse effect on length

$B \leq D - 2$, otherwise we could swap unused terminal nodes to group $D - 1$ of them, in which case we can altogether eliminate those terminal nodes
Optimal codes and complete trees

How large is B? $B + m = n(D - 1) + D$ so $D - 2 - B$ is the remainder of dividing $m - 2$ by $D - 1$, or $(m - 2)mod(D - 1)$

$$B = D - 2 - ((m - 2)mod(D - 1))$$

That is why we first group the $q = 2 + ((m - 2)mod(D - 1))$ least likely source symbols

After we have grouped those symbols, a complete tree is needed for the remaining $m - q$ symbols plus the symbol created by the amalgamation of the least likely q symbols

Use the fact that $B + q = D$

$$m - q + 1 = n(D - 1) + D - B - q + 1$$
$$= n(D - 1) + 1$$
$$= (n - 1)(D - 1) + D$$
What happens if the unlikely events change probability?

Major change may be necessary in the code

Cannot do a good job of coding until all events have been catalogued