Problem 5.1 (Euclidean division algorithm).
(a) For the set \(F[x] \) of polynomials over any field \(F \), show that the distributive law holds:
\[
(f_1(x) + f_2(x))h(x) = f_1(x)h(x) + f_2(x)h(x).
\]
(b) Use the distributive law to show that for any given \(f(x) \) and \(g(x) \) in \(F[x] \), there is a unique \(q(x) \) and \(r(x) \) with \(\deg r(x) < \deg g(x) \) such that \(f(x) = q(x)g(x) + r(x) \).

Problem 5.2 (unique factorization of the integers).
Following the proof of Theorem 7.7, prove unique factorization for the integers \(\mathbb{Z} \).

Problem 5.3 (finding irreducible polynomials).
(a) Find all prime polynomials in \(F_2[x] \) of degrees 4 and 5. [Hint: There are three prime polynomials in \(F_2[x] \) of degree 4 and six of degree 5.]
(b) Show that \(x^{16} + x \) factors into the product of the prime polynomials whose degrees divide 4, and \(x^{32} + x \) factors into the product of the prime polynomials whose degrees divide 5.

Problem 5.4 (The nonzero elements of \(F_{g(x)} \) form an abelian group under multiplication).
Let \(g(x) \) be a prime polynomial of degree \(m \), and \(r(x), s(x), t(x) \) polynomials in \(F_{g(x)} \).
(a) Prove the distributive law, i.e., \((r(x) + s(x)) \ast t(x) = r(x) \ast t(x) + s(x) \ast t(x) \). [Hint: Express each product as a remainder using the Euclidean division algorithm.]
(b) For \(r(x) \neq 0 \), show that \(r(x) \ast s(x) \neq r(x) \ast t(x) \) if \(s(x) \neq t(x) \).
(c) For \(r(x) \neq 0 \), show that as \(s(x) \) runs through all nonzero polynomials in \(F_{g(x)} \), the product \(r(x) \ast s(x) \) also runs through all nonzero polynomials in \(F_{g(x)} \).
(d) Show from this that \(r(x) \neq 0 \) has a mod-\(g(x) \) multiplicative inverse in \(F_{g(x)} \); i.e., that \(r(x) \ast s(x) = 1 \) for some \(s(x) \in F_{g(x)} \).

Problem 5.5 (Construction of \(F_{32} \)).
(a) Using an irreducible polynomial of degree 5 (see Problem 5.3), construct a finite field \(F_{32} \) with 32 elements.
(b) Show that addition in \(F_{32} \) can be performed by vector addition of 5-tuples over \(F_2 \).
(c) Find a primitive element \(\alpha \in F_{32} \). Express every nonzero element of \(F_{32} \) as a distinct power of \(\alpha \). Show how to perform multiplication and division of nonzero elements in \(F_{32} \) using this “log table.”
(d) Discuss the rules for multiplication and division in F_{32} when one of the field elements involved is the zero element, $0 \in F_{32}$.

Problem 5.6 (Second nonzero weight of an MDS code)

Show that the number of codewords of weight $d + 1$ in an (n, k, d) linear MDS code over F_q is

$$N_{d+1} = \binom{n}{d+1} \left(q^2 - 1 \right) - \binom{d+1}{d} (q - 1),$$

where the first term in parentheses represents the number of codewords with weight $\geq d$ in any subset of $d + 1$ coordinates, and the second term represents the number of codewords with weight equal to d.

Problem 5.7 (N_d and N_{d+1} for certain MDS codes)

(a) Compute the number of codewords of weights 2 and 3 in an $(n, n - 1, 2)$ SPC code over F_2.

(b) Compute the number of codewords of weights 2 and 3 in an $(n, n - 1, 2)$ linear code over F_3.

(c) Compute the number of codewords of weights 3 and 4 in a $(4, 2, 3)$ linear code over F_3.

Problem 5.8 (“Doubly” extended RS codes)

(a) Consider the following mapping from $(F_q)^k$ to $(F_q)^{q+1}$. Let $(f_0, f_1, \ldots, f_{k-1})$ be any k-tuple over F_q, and define the polynomial $f(z) = f_0 + f_1 z + \cdots + f_{k-1} z^{k-1}$ of degree less than k. Map $(f_0, f_1, \ldots, f_{k-1})$ to the $(q + 1)$-tuple $(\{f(\beta_j), \beta_j \in F_q\}, f_{k-1})$—i.e., to the RS codeword corresponding to $f(z)$, plus an additional component equal to f_{k-1}.

Show that the $q^k (q + 1)$-tuples generated by this mapping as the polynomial $f(z)$ ranges over all q^k polynomials over F_q of degree less than k form a linear $(n = q + 1, k, d = n - k + 1)$ MDS code over F_q. [Hint: $f(z)$ has degree less than $k - 1$ if and only if $f_{k-1} = 0$.]

(b) Construct a $(4, 2, 3)$ linear code over F_3. Verify that all nonzero words have weight 3.