Lecture 10: Solutions to Laplace's Equation in Cartesian Coordinates

I. Poisson's Equation

\[\nabla \times \mathbf{E} = 0 \Rightarrow \mathbf{E} = -\nabla \Phi \]
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon} \Rightarrow \nabla \cdot (\nabla \Phi) = \nabla^2 \Phi = -\frac{\rho}{\varepsilon} \] (Poisson's Equation)

II. Particular and Homogeneous Solutions

\[\nabla^2 \Phi_p = -\frac{\rho}{\varepsilon} \] Poisson's Equation \(\Rightarrow \Phi_p(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')dV'}{4\pi \varepsilon |\mathbf{r} - \mathbf{r}'|} \)

\[\nabla^2 \Phi_h = 0 \] Laplace's Equation

\[\nabla^2 (\Phi_p + \Phi_h) = -\frac{\rho}{\varepsilon} \]

\(\Phi = \Phi_p + \Phi_h \) must satisfy boundary conditions

III. Uniqueness of Solutions

Try 2 solutions \(\Phi_a \) and \(\Phi_b \)

\[\nabla^2 \Phi_a = -\frac{\rho}{\varepsilon} \]
\[\nabla^2 \Phi_b = -\frac{\rho}{\varepsilon} \]

\[\nabla^2 (\Phi_a - \Phi_b) = 0 \]

\(\Phi_d = \Phi_a - \Phi_b \Rightarrow \nabla^2 \Phi_d = 0 \Rightarrow \Phi_d = 0 \)

\[\nabla \cdot [\Phi_d \nabla \Phi_d] = \Phi_d \nabla^2 \Phi_d + \nabla \Phi_d \cdot \nabla \Phi_d = |\nabla \Phi_d|^2 \]

\[\int \nabla \cdot [\Phi_d \nabla \Phi_d] dV = \oint_{\mathbf{S}} \Phi_d \nabla \Phi_d \cdot \mathbf{n} d\mathbf{a} = \int_{\mathbf{V}} |\nabla \Phi_d|^2 dV = 0 \]

on \(\mathbf{S} \), \(\Phi_d = 0 \) or \(\nabla \Phi_d \cdot \mathbf{n} d\mathbf{a} = 0 \)

\(\Phi_d = 0 \Rightarrow \Phi_a = \Phi_b \) on \(\mathbf{S} \)

\[\nabla \Phi_a \cdot \mathbf{n} d\mathbf{a} = 0 \Rightarrow \frac{\partial \Phi_a}{\partial n} = \frac{\partial \Phi_b}{\partial n} \text{ on } SE \Rightarrow \mathbf{n}_a = \mathbf{E}_b \text{ on } \mathbf{S} \]
A problem is uniquely posed when the potential or the normal derivative of the potential (normal component of electric field) is specified on the surface surrounding the volume.

IV. Boundary Conditions

1. Gauss' Continuity Condition

\[
\oint \vec{D} \cdot d\vec{a} = \int \sigma_{sf} dS \Rightarrow (D_{2n} - D_{1n}) dS = \sigma_{sf} dS
\]

\[
\vec{n} \cdot \left[(\vec{D}_2 - \vec{D}_1) \right] = \sigma_{sf}
\]

2. Continuity of Tangential \(\vec{E} \)

\[
\int \vec{n} \cdot (\vec{E}_2 - \vec{E}_1) = 0
\]

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some surface charge shows that the normal component of \(\varepsilon_0 \vec{E} \) is discontinuous in the surface charge density.

Courtesy of Krieger Publishing. Used with permission.

\[
\oint \vec{D} \cdot d\vec{a} = \int \sigma_{sf} dS \Rightarrow (D_{2n} - D_{1n}) dS = \sigma_{sf} dS
\]

\[
\vec{n} \cdot \left[(\vec{D}_2 - \vec{D}_1) \right] = \sigma_{sf}
\]

Figure 3-12 (a) Stokes' law applied to a line integral about an interface of discontinuity shows that the tangential component of electric field is continuous across the boundary.

Courtesy of Krieger Publishing. Used with permission.
\[\oint \mathbf{E} \cdot d\mathbf{s} = (E_{1t} - E_{2t}) dl = 0 \Rightarrow E_{1t} - E_{2t} = 0 \]

Equivalent to \(\Phi_1 = \Phi_2 \) along boundary

V. Solutions to Laplace's Equation in Cartesian Coordinates, \(\Phi(x, y) \)

\[\nabla^2 \Phi(x, y) = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0 \]

1. Try product solution: \(\Phi(x, y) = X(x) Y(y) \)

\[Y(y) \frac{d^2 X(x)}{dx^2} + X(x) \frac{d^2 Y(y)}{dy^2} = 0 \]

Multiply through by \(\frac{1}{XY} \):

\[\frac{1}{X} \frac{d^2 X}{dx^2} = - \frac{1}{Y} \frac{d^2 Y}{dy^2} = -k^2 \]

only a function of \(x \)

only a function of \(y \)

\[\frac{d^2 X}{dx^2} = -k^2 X \quad ; \quad \frac{d^2 Y}{dy^2} = k^2 Y \]

2. Zero Separation Constant Solutions: \(k=0 \)

\[\frac{d^2 X}{dx^2} = 0 \Rightarrow X = a_i x + b_i \]

\[\frac{d^2 Y}{dy^2} = 0 \Rightarrow Y = c_i y + d_i \]

\(\Phi(x, y) = XY = a_2 + b_2 x + c_2 y + d_2 xy \)

3. Non-Zero Separation Constant Solutions: \(k\neq0 \)

\[\frac{d^2 X}{dx^2} + k^2 X = 0 \Rightarrow X = A_1 \sin kx + A_2 \cos kx \]
\[
\frac{d^2 Y}{dy^2} - k^2 Y = 0 \Rightarrow Y = B_1 e^{ky} + B_2 e^{-ky} = C_1 \sinh ky + D_1 \cosh ky
\]

Figure 4-3 The exponential and hyperbolic functions for positive and negative arguments.

\[
\Phi(x, y) = X(x)Y(y) = D_1 \sin kxe^{ky} + D_2 \sin kxe^{-ky} + D_3 \cos kxe^{ky} + D_4 \cos kxe^{-ky}
\]

\[
= E_1 \sin kx \sinh ky + E_2 \sin kx \cosh ky + E_3 \cos kx \sinh ky + E_4 \cos kx \cosh ky
\]
4. Parallel Plate Electrodes

Neglecting end effects, \(\Phi (x) \). Boundary conditions are:

\[
\Phi (x = 0) = \Phi_0, \quad \Phi (x = d) = \Phi_d
\]

Try zero separation constant solution:

\[
\Phi (x) = a_1 x + b_1
\]

\[
\Phi (x = 0) = \Phi_0 = b_1
\]

\[
\Phi (x = d) = \Phi_0 = a_1 d + b_1 \Rightarrow a_1 = \frac{\Phi_d - \Phi_0}{d}
\]

\[
\Phi (x) = \frac{\Phi_d - \Phi_0}{d} x + \Phi_0
\]

\[
E_x = -\frac{d\Phi}{dx} = \frac{\Phi_d - \Phi_0}{d} \quad \text{(Electric field is uniform and equal to potential difference divided by spacing)}
\]

5. Hyperbolic Electrode Boundary Conditions

\[
\Phi (xy = ab) = V_0
\]

\[
\Phi (x = 0, y) = 0
\]

\[
\Phi (x, y = 0) = 0
\]

\[
\Phi (x, y) = V_0 \frac{xy}{(ab)}
\]

\[
\mathbf{E} = -\nabla \Phi = -\frac{\partial \Phi}{\partial x} \mathbf{i}_x - \frac{\partial \Phi}{\partial y} \mathbf{i}_y
\]

\[
= -\frac{V_0}{ab} \left[y \mathbf{i}_x + x \mathbf{i}_y \right]
\]
Electric field lines:

\[
\frac{dy}{dx} = \frac{E_x}{E_y} = \frac{x}{y}
\]

\[y dy = x dx\]

\[\frac{y^2}{2} = \frac{x^2}{2} + C\]

\[y^2 = x^2 + y_0^2 - x_0^2\] (field line passes through \((x_0, y_0)\))

Figure 4-1. The equipotential and field lines for a hyperbolically shaped electrode at potential \(V_0\) above a right-angle conducting corner are orthogonal hyperbolas.

Courtesy of Krieger Publishing. Used with permission.
6. Spatially Periodic Potential Sheet

\[\Phi(x, y) = \begin{cases}
V_0 \sin ay e^{ax} & x \geq 0 \\
V_0 \sin ay e^{-ax} & x \leq 0
\end{cases} \]

\[\vec{E} = -\nabla \Phi(x, y) = - \left(\frac{\partial \Phi}{\partial x} \hat{i}_x + \frac{\partial \Phi}{\partial y} \hat{i}_y \right) \]

\[= \begin{cases}
-V_0 e^{ax} \left[\cos ay \hat{i}_y - \sin ay \hat{i}_x \right] & x > 0 \\
-V_0 e^{-ax} \left[\cos ay \hat{i}_y + \sin ay \hat{i}_x \right] & x < 0
\end{cases} \]

\[\sigma_s(x = 0) = \varepsilon_0 \left[E_x(x = 0^+) - E_x(x = 0^-) \right] = 2\varepsilon_0 V_0 \sin ay \]

Electric Field Lines:

\[\frac{dy}{dx} = \frac{E_y}{E_x} = \begin{cases}
-\cot ay & x > 0 \\
+\cot ay & x < 0
\end{cases} \]
\[x > 0 \quad \cos ay e^{-ax} = \text{constant} \]
\[x < 0 \quad \cos ay e^{ax} = \text{constant} \]

\[V = V_0 \sin ay e^{ax} \]
\[E = -V_0 ae^{ax}[\cos ayi_y + \sin ayi_x] \]

Figure 4-4 The potential and electric field decay away from an infinite sheet with imposed spatially periodic voltage. The field lines emanate from positive surface charge on the sheet and terminate on negative surface charge.

Courtesy of Krieger Publishing. Used with permission.