I. Poisson’s Equation
\[\nabla \times \mathbf{E} = 0 \Rightarrow \mathbf{E} = -\nabla \Phi \]
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon} \Rightarrow \nabla \cdot (\nabla \Phi) = \nabla^2 \Phi = -\frac{\rho}{\varepsilon} \] (Poisson’s Equation)

II. Particular and Homogeneous Solutions
\[\nabla^2 \Phi_p = -\frac{\rho}{\varepsilon} \] Poisson’s Equation \[\Phi_p(\mathbf{r}) = \frac{\rho(\mathbf{r})}{4\pi\varepsilon_0 \mathbf{r}} \]
\[\nabla^2 \Phi_h = 0 \] Laplace’s Equation
\[\nabla^2 (\Phi_p + \Phi_h) = -\frac{\rho}{\varepsilon} \]
\[\Phi = \Phi_p + \Phi_h \] must satisfy boundary conditions

III. Uniqueness of Solutions
Try 2 solutions \(\Phi_a \) and \(\Phi_b \)
\[\nabla^2 \Phi_a = -\frac{\rho}{\varepsilon} \]
\[\nabla^2 \Phi_b = -\frac{\rho}{\varepsilon} \]
\[\nabla^2 (\Phi_a - \Phi_b) = 0 \]
\[\Phi_d = \Phi_a - \Phi_b \Rightarrow \nabla^2 \Phi_d = 0 \Rightarrow \Phi_d = 0 \]
\[\nabla \cdot [\Phi_d \nabla \Phi_d] = \Phi_d \nabla^2 \Phi_d + \nabla \Phi_d \cdot \nabla \Phi_d = \| \nabla \Phi_d \|^2 \]
\[\int \nabla \cdot [\Phi_d \nabla \Phi_d] \, dV \]
\[\int \Phi_d \nabla \Phi_d \cdot d\mathbf{a} = \int \| \nabla \Phi_d \|^2 \, dV = 0 \]
on \(\Sigma \), \(\Phi_\Sigma = 0 \) or \(\nabla \Phi_\Sigma \cdot d\mathbf{a} = 0 \)
\[\Phi_d = 0 \Rightarrow \Phi_a = \Phi_b \] on \(\Sigma \)
\[\nabla \Phi_d \cdot d\mathbf{a} = 0 \Rightarrow \frac{\partial \Phi_a}{\partial n} = \frac{\partial \Phi_b}{\partial n} \] on \(\Sigma \)
\[n_a = E_{nb} \] on \(\Sigma \)
A problem is uniquely posed when the potential or the normal derivative of the potential (normal component of electric field) is specified on the surface surrounding the volume.

IV. Boundary Conditions

1. Gauss' Continuity Condition

\[
\oint \mathbf{D} \cdot d\mathbf{a} = \int_S \sigma_{sf} dS \Rightarrow (D_{2n} - D_{1n}) dS = \sigma_{sf} dS
\]

Figure 2.19 Gauss's law applied to a differential sized pill-box surface enclosing some surface charge shows that the normal component of \(\varepsilon_0 \mathbf{E} \) is discontinuous in the surface charge density.

\[
\mathbf{n} \cdot \left(\mathbf{D}_2 - \mathbf{D}_1 \right) = \sigma_{sf}
\]

2. Continuity of Tangential \(\mathbf{E} \)

\[
\mathbf{n} \times (\mathbf{E}_2 - \mathbf{E}_1) = 0
\]

Figure 3.12 (a) Stokes' law applied to a line integral about an interface of discontinuity shows that the tangential component of electric field is continuous across the boundary.
\[\oint_{c} \vec{E} \cdot d\vec{s} = (E_{1t} - E_{2t}) \, dl = 0 \Rightarrow E_{1t} - E_{2t} = 0 \]

Equivalent to \(\Phi_1 = \Phi_2 \) along boundary

V. Solutions to Laplace's Equation in Cartesian Coordinates, \(\Phi (x, y) \)

\[\nabla^2 \Phi (x, y) = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0 \]

1. Try product solution: \(\Phi (x, y) = X(x) \, Y(y) \)

\[Y(y) \frac{d^2 X(x)}{dx^2} + X(x) \frac{d^2 Y(y)}{dy^2} = 0 \]

Multiply through by \(\frac{1}{XY} \):

\[\frac{1}{X} \frac{d^2 X}{dx^2} = - \frac{1}{Y} \frac{d^2 Y}{dy^2} = - k^2 \]

Only a function of \(x \) \(\frac{d^2 X}{dx^2} = - k^2 X \); \(\frac{d^2 Y}{dy^2} = k^2 Y \)

2. Zero Separation Constant Solutions: \(k = 0 \)

\[\frac{d^2 X}{dx^2} = 0 \Rightarrow X = a_1 x + b_1 \]

\[\frac{d^2 Y}{dy^2} = 0 \Rightarrow Y = c_1 y + d_1 \]

\(\Phi (x, y) = XY = a_2 + b_2 x + c_2 y + d_2 xy \)

3. Non-Zero Separation Constant Solutions: \(k \neq 0 \)

\[\frac{d^2 X}{dx^2} + k^2 X = 0 \Rightarrow X = A_1 \sin kx + A_2 \cos kx \]
\[\frac{d^2 Y}{dy^2} - k^2 Y = 0 \implies Y = B_1 e^{ky} + B_2 e^{-ky} = C_1 \sinh ky + D_1 \cosh ky \]

\[\Phi(x, y) = X(x)Y(y) = D_1 \sin kxe^{ky} + D_2 \sin kxe^{-ky} + D_3 \cos kxe^{ky} + D_4 \cos kxe^{-ky} = E_1 \sin kx \sinh ky + E_2 \sin kx \cosh ky + E_3 \cos kx \sinh ky + E_4 \cos kx \cosh ky \]

Figure 4-3 The exponential and hyperbolic functions for positive and negative arguments.
4. Parallel Plate Electrodes

Neglecting end effects, $\phi (x)$. Boundary conditions are:

\[\phi (x = 0) = \phi_0, \quad \phi (x = d) = \phi_d \]

Try zero separation constant solution:

\[\phi (x) = a_1 x + b_1 \]

\[\phi (x = 0) = \phi_0 = b_1 \]

\[\phi (x = d) = \phi_d = a_1 d + b_1 \Rightarrow a_1 = \frac{\phi_d - \phi_0}{d} \]

\[\phi (x) = \frac{\phi_d - \phi_0}{d} \cdot x + \phi_0 \]

\[E_x = -\frac{d\phi}{dx} = \frac{\phi_d - \phi_0}{d} \] (Electric field is uniform and equal to potential difference divided by spacing)

5. Hyperbolic Electrode Boundary Conditions

\[\phi (xy = ab) = V_0 \]

\[\phi (x = 0, y) = 0 \]

\[\phi (x, y = 0) = 0 \]

\[\phi (x, y) = V_0 \cdot \frac{xy}{ab} \]

\[\mathbf{E} = -\nabla \phi = -\frac{\partial \phi}{\partial x} \mathbf{i}_x - \frac{\partial \phi}{\partial y} \mathbf{i}_y \]

\[= -\frac{V_0}{ab} \left[y \mathbf{i}_x + x \mathbf{i}_y \right] \]
Electric field lines:

\[
\frac{dy}{dx} = \frac{E_x}{E_y} = \frac{x}{y}
\]

\[y\,dy = x\,dx\]

\[
\frac{y^2}{2} = \frac{x^2}{2} + C
\]

\[y^2 = x^2 + y_0^2 - x_0^2 \quad \text{(field line passes through } (x_0, y_0)\text{)}\]

Figure 4-1. The equipotential and field lines for a hyperbolically shaped electrode at potential \(V_0\) above a right-angle conducting corner are orthogonal hyperbolas.
6. Spatially Periodic Potential Sheet

\[\Phi(x, y) = \begin{cases}
V_0 \sin ay e^{ax} & x \geq 0 \\
V_0 \sin ay e^{ax} & x \leq 0
\end{cases} \]

\[\mathbf{E} = -\nabla \Phi(x, y) = - \left[\frac{\partial \Phi}{\partial x} \mathbf{i}_x + \frac{\partial \Phi}{\partial y} \mathbf{i}_y \right] \]

\[= \begin{cases}
-V_0 a e^{ax} \left[\cos ay \mathbf{i}_y - \sin ay \mathbf{i}_x \right] & x > 0 \\
-V_0 a e^{ax} \left[\cos ay \mathbf{i}_y + \sin ay \mathbf{i}_x \right] & x < 0
\end{cases} \]

\[\sigma_s(x = 0) = \varepsilon_0 \left[E_x(x = 0^+) - E_x(x = 0^-) \right] = 2\varepsilon_0 V_0 a \sin ay \]

Electric Field Lines:

\[\frac{dy}{dx} = \frac{E_y}{E_x} = \begin{cases}
-\cot ay & x > 0 \\
+\cot ay & x < 0
\end{cases} \]
\[x > 0 \quad \cos ay e^{-ax} = \text{constant} \]

\[x < 0 \quad \cos ay e^{+ax} = \text{constant} \]

\[V = V_0 \sin ay e^{+ax} \]
\[E = -V_0 a e^{+ax} [\cos ay + \sin ay] \]

\[V = V_0 \sin ay e^{-ax} \]
\[E = -V_0 a e^{-ax} [\cos ay - \sin ay] \]

Figure 4-4 The potential and electric field decay away from an infinite sheet with imposed spatially periodic voltage. The field lines emanate from positive surface charge on the sheet and terminate on negative surface charge.