Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.)

The ”Long” Metal-Oxide-Semiconductor Field-Effect Transistor

April 6, 2007

Contents:

1. Dynamics of the MOS structure (cont.)
2. Three-terminal MOS structure
3. Introduction to MOSFET

Reading assignment:

del Alamo, Ch. 8, §§8.5-8.6; Ch. 9, §9.1
Key questions

• What happens to the C-V characteristics of a MOS structure if the \textit{bias} is switched abruptly?

• What happens to the electrostatics of the MOS structure if we contact the inversion layer and we apply a bias to it?

• How does a MOSFET look like and how does it work (roughly)?
1. Dynamics of the MOS structure (cont.)

☐ Deep depletion

Consider what happens after the application of a voltage step from depletion towards inversion.

On top of step, put HF small signal to measure C

Immediately after the onset of the step (after an RC delay), inversion layer does not have a chance to grow (electrons must be generated)

→ MOS remains in depletion ("deep depletion")

→ x_d grows beyond $x_{d_{max}}$

→ C smaller than C_{HF}
Even though \(V > V_{th} \), capacitance in deep depletion described by expression derived for depletion regime:

\[
C_{dd} \simeq \frac{C_{ox}}{\sqrt{1 + 4\frac{V-V_{FB}}{\gamma^2}}}
\]

C-V characteristics:
2. Three-terminal MOS structure

Introduce contact to inversion layer:

Can now apply bias to inversion layer with respect to substrate, V_{SB}.

Source-body junction: $n^+\text{-p junction} \rightarrow$ only reverse bias desired, $V_{SB} \geq 0$.

Interested only in inversion regime: apply $V_{SB} \geq 0$ keeping V_{GB} constant.
Energy band diagrams:

\[\phi_s(V_{SB}) = \phi_s(V_{SB} = 0) + V_{SB} \]

Application of \(V_{SB} > 0 \), increases \(\phi_s \), and also \(|Q_d| \).
\(V_{SB} > 0 \Rightarrow x_d \uparrow \mid Q_d \uparrow \phi_s \uparrow \) (as in reverse bias p-n junction).

Total potential difference from G to B fixed:

\[
\phi_{bi} + V_{GB} = \phi_{ox} + \phi_s
\]

Hence: \(\phi_{ox} \downarrow \Rightarrow \mathcal{E}_{ox} \downarrow \mathcal{E}_s \downarrow \)
But:

$$\mathcal{E}_s = -\frac{Q_s}{\epsilon_s}$$

Hence: $|Q_s| \downarrow$

In summary:

$$|Q_s| \downarrow \quad |Q_d| \uparrow \quad \Rightarrow \quad |Q_i| \downarrow$$

equivalent to V_{th} shifting positive.

Key conclusion: *application of a body bias turns inversion layer off!*

Important implications for device and circuit design and operation.
• V_{th} model that accounts for body bias

Go to Poisson-Boltzmann formulation and change:

$$\phi_{sth} \rightarrow \phi_{sth} + V_{SB}$$

Then:

$$V_{th} = V_{FB} + \phi_{sth} + V_{SB} + \gamma \sqrt{\phi_{sth} + V_{SB}}$$

For MOSFET operation, interested in threshold in V_{GS}:

$$V_{GB} = V_{GS} + V_{SB}$$

Then:

$$V_{th}^{GS}(V_{SB}) = V_{th}^{GB} - V_{SB} = V_{FB} + \phi_{sth} + \gamma \sqrt{\phi_{sth} + V_{SB}}$$

Can easily rewrite as:

$$V_{th}^{GS}(V_{SB}) = V_{th}^{GS}(V_{SB} = 0) + \gamma (\sqrt{\phi_{sth} + V_{SB}} - \sqrt{\phi_{sth}})$$

Note: $V_{SB} \uparrow \Rightarrow V_{th}^{GS} \uparrow$
Back bias effect important in MOSFETs and CMOS.

Ideally, the body of every MOSFET should be tied to its source, but that’s expensive. What are the trade-offs?

Focus on M3 (nMOSFET) of NAND gate:

- with local body contact: $V_{SB} = 0$ always \Rightarrow V_{th} predictable
- with global body contact: sometimes $V_{SB} > 0$ \Rightarrow slower switching, "jitter"
3. MOSFET Introduction

Cross section and layout of n-channel MOSFET (NMOS):

Inversion layer links source and drain underneath gate.
Inversion layer current depends on:

- lateral field across inversion layer (set to first order by drain-to-source voltage)
- electron concentration in inversion layer (set to first order by gate-to-source voltage)

Key design parameters:

- gate length, $L \simeq$ electrical channel length
- gate oxide thickness, x_{ox}
- source and drain junction depth, x_j
- doping level in body, N_A
4. The ideal MOSFET

Simplifying assumptions:

- Carrier flow is one dimensional.
- Uniform doping levels
- Electron transport in inversion layer takes place by drift (i.e., neglect diffusion).
- Electrons drift along the inversion layer in the mobility regime, i.e., the electron velocity is proportional to the lateral electric field along the inversion layer.
- Neglect body effect (dependence of V_T with y)
- No parasitic resistances
• Ignore junction sidewall effects.
• No three-dimensional effects (device scales perfectly with its width).
• Neglect impact of substrate that surrounds the transistor

Definitions of spacial coordinates and voltages:
Key conclusions

- *Deep depletion*: condition of MOS structure suddenly switched from below threshold to above threshold.

- Application of voltage to inversion layer with respect to substrate shifts threshold voltage: $V_{SB} \uparrow \Rightarrow V_{th} \uparrow$.