6.776
High Speed Communication Circuits and Systems
Lecture 13
LNA Design Examples and Recent Techniques

Massachusetts Institute of Technology
March 17, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott
LNA Design Example

- In our previous design example, we picked the Q for the minimum possible noise factor: Q=1.4
- We (arbitrarily) chose $V_{gs}=1V$

The design yields

Noise Factor $= 1.12$ and Noise Figure $= 0.49dB$

And requires

$C_{gs} = 631 fF, L_{deg} = 0.17 nH, L_g = 12.2 nH$

$W = 392 \mu, I_{bias} = 69 mA$
Problem: the device is in velocity saturation

H.-S. Lee & M.H. Perrott

MIT OCW
We Have Two “Handles” to Lower Power Dissipation

- **Key formulas**

 \[I_{bias} = I_{den} W \]
 \[F = 1 + \left(\frac{w_o}{w_t} \right) \gamma \left(\frac{g_{do}}{g_m} \right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2 \right) \]

- **Lower current density,** \(I_{den} \)
 - **Benefits**
 \[\Rightarrow \text{lower power, lower} \ \frac{g_{do}}{g_m} \text{ ratio} \]
 - **Negatives**
 \[\Rightarrow \text{lower IIP3, lower} \ f_t \]

- **Lower** \(W \)
 - **Benefit:** lower power
 - **Negatives**
 \[\Rightarrow \text{lower} \ C_{gs} = \frac{2}{3} W L C_{ox} \Rightarrow \text{higher} \ Q = \frac{1}{w_o C_{gs} 2R_s} \]
 \[\Rightarrow \text{higher} \ F \text{ (and higher inductor values)} \]
First Step in Redesign – Lower Current Density, I_{den}

- Need to verify that IIP_3 still OK (once we know Q)

$V_{\text{gs}}, g_m, \text{ and } g_{\text{do}}$ versus Current Density for 0.18μ NMOS

$W/L = \frac{1.8\mu}{0.18\mu}$
Recalculate Process Parameters

- Assume that the only thing that changes is $\frac{g_m}{g_{do}}$ and f_t
 - From previous graph ($I_{den} = 100 \ \mu A/\mu m$)
 \[
 \frac{g_m}{g_{do}} \approx \frac{.78}{1.15} \approx 0.68 \Rightarrow \chi_d = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}} = 0.63 \sqrt{\frac{2}{5}} \approx 0.43
 \]
 \[
 w_t \approx \frac{g_m}{C_{gs}} \approx \frac{0.78 mS}{2.9 fF} = (2\pi)42.8 \text{GHz}
 \]
- We now need to replot the Noise Factor scaling coefficient
 - Also plot over a wider range of Q

\[
F = 1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)
\]

Noise Factor scaling coefficient
Achievable values as a function of Q under the constraints that

\[\frac{1}{\sqrt{(L_g + L_{\text{deg}})C_{gs}}} = w_0 \]

\[\frac{g_m}{C_{gs}} L_{\text{deg}} = R_s \]

Note: \(Q = \frac{1}{2R_s w_0 C_{gs}} \)
Second Step in Redesign – Lower W (or Raise Q)

- Recall
 \[C_{gs} = \frac{2}{3} W L C_{ox}, \quad Q = \frac{1}{w_o C_{gs} 2\beta_s} \]

- \(I_{bias} \) can be related to \(Q \) as
 \[I_{bias} = I_{den} W = I_{den} \frac{3}{2 L C_{ox}} C_{gs} = I_{den} \frac{3}{2 L C_{ox} w_o 2\beta_s Q} \]
 \[\Rightarrow I_{bias} \propto \frac{1}{Q} \]

- We previously chose \(Q = 1.4 \), let’s now choose \(Q = 6 \)
 - This alone cuts power dissipation by more than a factor of 4. Combined with lower \(I_{den} \), almost a factor of 8 reduction in power
 - New value of \(W \):
 \[\Rightarrow W = 392 \mu \cdot \frac{1.4}{6} \approx 91 \mu m \]
Power Dissipation and Noise Figure of New Design

- **Power dissipation**

\[I_{\text{bias}} = I_{\text{den}} W = (100 \mu A/\mu m)(91 \mu m) = 9.1 mA \]

- At 1.8 V supply

\[\Rightarrow \text{Power} = (9.1 mA)(1.8V) = 16.4 mW \]

- **Noise Figure**

 - \(f_t \) previously calculated, get scaling coeff. from plot

\[\frac{w_o}{w_t} = \frac{2\pi 1.8e9}{2\pi 42.8e9} \approx \frac{1}{23.8}, \text{ scaling coeff. } \approx 10 \]

\[\Rightarrow \text{Noise Factor} \approx 1 + \frac{1}{23.8} 10 \approx 1.42 \]

\[\Rightarrow \text{Noise Figure} = 10 \log(1.42) \approx 1.52 \text{ dB} \]
Updated Component Values

- Assume $R_s = 50$ Ohms, $Q = 6$, $f_o = 1.8$ GHz, $f_t = 42.8$ GHz
 - C_{gs} calculated as
 \[Q = \frac{1}{2R_s w_o C_{gs}} \]
 \[\Rightarrow C_{gs} = \frac{1}{2R_s w_o Q} = \frac{1}{2(50)2\pi 1.8\times10^9(6)} \approx 147 \text{ fF} \]
 - L_{deg} calculated as
 \[\frac{g_m}{C_{gs}} L_{deg} = R_s \Rightarrow L_{deg} = \frac{R_s}{w_t} = \frac{50}{2\pi 42.8\times10^9} = 0.19 \text{ nH} \]
 - L_g calculated as
 \[\frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o \Rightarrow L_g = \frac{1}{w_o^2 C_{gs}} - L_{deg} \]
 \[\Rightarrow L_g = \frac{1}{(2\pi 1.8\times10^9)^2 147 \times 10^{-15}} - 0.19 \times 10^{-9} = 53 \text{ nH} \]
Inclusion of Load (Resonant Tank)

- Add output load to achieve voltage gain
 - Note: in practice, use cascode device
 - We’re ignoring C_{gd} in this analysis
Calculation of Gain

- Assume load tank resonates at frequency ω_0

- Assume $Z_{in} = R_s$

\[v_{gs} = \frac{v_{in}}{2R_s} \left(\frac{1}{j\omega_0 C_{gs}} \right) = \left(\frac{Q}{j} \right) v_{in} \]

\[i_{out} = g_m \left(\frac{Q}{j} \right) v_{in} \quad \Rightarrow \quad v_{out} = -g_m R_L \left(\frac{Q}{j} \right) v_{in} \]
Setting of Gain

\[|\text{Gain}| = g_m R_L Q \]

- Parameters \(g_m \) and \(Q \) were set by Noise Figure and IIP3 considerations
 - Note that \(Q \) is of the input matching network, not the amplifier load
- \(R_L \) is the free parameter – use it to set the desired gain
 - Note that higher \(R_L \) for a given resonant frequency and capacitive load will increase \(Q_L \) (i.e., \(Q \) of the amplifier load)
 - There is a tradeoff between amplifier bandwidth and gain
 - Generally set \(R_L \) according to overall receiver noise and IIP3 requirements (higher gain is better for noise)
 - Very large gain (i.e., high \(Q_L \)) is generally avoided to minimize sensitivity to process/temp variations that will shift the center frequency and to avoid parasitic oscillation
The Issue of Package Parasitics

- Bondwire (and package) inductance causes two issues
 - Value of degeneration inductor is altered
 - Noise from other circuits couples into LNA
Differential LNA

- **Advantages**
 - Value of L_{deg} is now much better controlled
 - Much less sensitivity to noise from other circuits

- **Disadvantages**
 - Twice the power as the single-ended version
 - Requires differential input at the chip
Note: Be Generous with Substrate Contact Placement

- Having an abundance of nearby substrate contacts helps in three ways
 - Reduces possibility of latch up issues
 - Lowers R_{sub} and its associated noise
 - Impacts LNA through backgate effect (g_{mb})
 - Absorbs stray electrons from other circuits that will otherwise inject noise into the LNA
 - Negative: takes up a bit extra area
Most broadband systems are not as stringent on their noise requirements as wireless counterparts.

Equivalent input voltage is often specified rather than a Noise Figure.

Typically use a resistor to achieve a broadband match to input source.
- We know from Lecture 12 that this will limit the noise figure to be higher than 3 dB.

For those cases where low Noise Figure is important, are there alternative ways to achieve a broadband match?
Recall Noise Factor Calculation for Resistor Load

- Total output noise
 \[
 \frac{v_{\text{nout}(\text{tot})}^2}{v_{\text{nout}(\text{tot})}^2} = \left(\frac{R_L}{R_s + R_L}\right)^2 \frac{e_{nRs}^2}{R_s + R_L} + \left(\frac{R_s}{R_s + R_L}\right)^2 \frac{e_{nRL}^2}{R_L}
 \]

- Total output noise due to source
 \[
 \frac{v_{\text{nout}(\text{in})}^2}{v_{\text{nout}(\text{in})}^2} = \left(\frac{R_L}{R_s + R_L}\right)^2 \frac{e_{nRs}^2}{R_s + R_L}
 \]

- Noise Factor
 \[
 F = 1 + \left(\frac{R_s}{R_L}\right)^2 \frac{e_{nRL}^2}{e_{nRs}^2} = 1 + \left(\frac{R_s}{R_L}\right)^2 \frac{4kTR_L}{4kTR_s} = 1 + \frac{R_s}{R_L}
 \]
Noise Figure For Amp with Resistor in Feedback

- **Total output noise (assume A is large and noiseless)**

\[
\frac{v_{\text{out (tot)}}^2}{v_{\text{in}}} \approx \left(-\frac{R_f}{R_s} \right)^2 e_{nR_s}^2 + e_{nR_f}^2
\]

- **Total output noise due to source (assume A is large)**

\[
\frac{v_{\text{out (in)}}^2}{v_{\text{in}}} \approx \left(-\frac{R_f}{R_s} \right)^2 e_{nR_s}^2
\]

- **Noise Factor**

\[
F \approx 1 + \left(\frac{R_s}{R_f} \right)^2 e_{nR_f}^2 = 1 + \left(\frac{R_s}{R_f} \right)^2 \frac{4kTR_f}{4kTR_s} = 1 + \frac{R_s}{R_f}
\]
Recall from Miller effect discussion that

\[Z_{in} = \frac{Z_f}{1 - \text{gain}} = \frac{R_f}{1 + A} \]

If we choose \(Z_{in} \) to match \(R_s \), then

\[R_f = (1 + A)Z_{in} = (1 + A)R_s \]

Therefore, Noise Figure lowered by being able to choose a large value for \(R_f \) since

\[F \approx 1 + \frac{R_s}{R_f} \]
Resistor Termination vs. Resistor in Feedback

For Termination

\[R_s = R_L \]
\[F \approx 1 + \frac{R_s}{R_L} = 2 \]

For Termination

\[R_f = (1 + A)Z_{in} = (1 + A)R_s \]
\[F \approx 1 + \frac{R_s}{R_f} = 1 + \frac{1}{1 + A} \]
Example – Series-Shunt Amplifier

- Recall that the above amplifier was analyzed in Lecture 7
- Tom Lee’s book points out that this amplifier topology is actually used in noise figure measurement systems such as the Hewlett-Packard 8970A
 - It is likely to be a much higher performance transistor than a CMOS device, though
Recent CMOS LNA Techniques

- Consider increasing g_m for a given current by using both PMOS and NMOS devices
 - Key idea: re-use of current

See A. Karanicolas, “A 2.7 V 900-MHz CMOS LNA and Mixer”, JSSC, Dec 1996
Biasing for LNA Employing Current Re-Use

- PMOS is biased using a current mirror
- NMOS current adjusted to match the PMOS current
Another Recent Approach

- Feedback from output to base of transistor provides another degree of freedom. Negative feedback improves IIP3.

For details, check out:
- Rossi, P. et. Al., “A 2.5 dB NF Direct-Conversion Receiver Front-End for HiperLan2/IEEE802.11a”, ISSCC 2004, pp. 102-103
Recent Broadband LNA Approaches

- Can create broadband matching networks using LC-ladder filter design techniques
- CMOS example:

Recent Broadband LNA Approaches (Continued)

- Bipolar example:

Gm Boosting for Noise Figure Improvement

- Gm Boosted CG Amp

\[F = 1 + \frac{\gamma}{\alpha} \]

But, the amplifier adds noise and power. How do we boost the Gm without an amplifier?

- See Xiaoyong Li et. al., “Low-Power gm-boosted LNA and VCO Circuits in 0.18\(\mu\)m CMOS” 2005 ISSCC Digest of Technical Papers pp. 534-353

H.-S. Lee & M.H. Perrott
Gm Boosting by a Transformer

- Gm is boosted without adding noise by the step-up transformer
- Transformer provides gate and source with voltages 180° out of phase: effective increase in V_{gs}

\[F = 1 + \frac{\gamma}{\alpha} \cdot \frac{1}{1 + nk} \]
Revisit Neutralization

- Issues:
 - Power Consumption
 - Output swing (additional drop for the tail current)
 - Differential output
 - Matching between C_{gd} and C_N
Can We Tune Out C_{gd} Instead?

- Conceptually, one can tune out C_{gd} by a series inductor L. C_{BIG} is necessary to block DC between input and output.
 - Inductor value too large
 - Bottom plate parasitic capacitance of C_{BIG}

Neutralization by Transformer Feedback

Neutralization of C_{gd} by C_{gs} if

$$\frac{n}{k} = \frac{C_{gs}}{C_{gd}}$$

Advantages
- No DC drop: can operate at low supply voltages
- Power match by inductor degeneration
- No additional power consumption
- C_{gd} to C_{gs} matching is better than C_{gd} to C_N
Differential Implementation

Differential Output LNA

Provides differential output to drive balanced mixers
See D. Sahu et. al. “A 90nm CMOS Single-Chip GPS Receiver with 5dBm Out-of-Band IIP3 2.0dB NF”, 2005 ISSCC Digest of Technical Papers, pp308-309

H.-S. Lee & M.H. Perrott
Adjustable Gain LNA

Gain is adjusted by diverting output current in the cascode stage.

See H. Darabi, et. al, "A Fully Integrated SoC for 802.11b in 0.18\mu m CMOS", 2005 ISSCC Digest of Technical Papers, pp 96-97.