Fluids A

Joel Voldman*

Massachusetts Institute of Technology

*(with thanks to SDS)
Outline

> Intro to microfluidics

> Basic concepts: viscosity and surface tension

> Governing equations

> Incompressible laminar flow
Microfluidics

> The manipulation and use of fluids at the microscale

> Most fluid domains are in use at the microscale

- Explosive thermofluidic flows
 - Inkjet printheads
 - We will not cover this regime
- High-speed gas flows
 - Micro-turbomachinery
 - We will not cover this regime
- Low-speed gas flows
 - Squeeze-film damping
 - We’ll do a bit of this to get \(b \) for SMD
- Liquid-based slow flow
 - This will be the focus
Microfluidics

> This has been one of the most important domains of MEMS
 • Even though most microfluidics is not “MEMS”
 • And there are few commercial products

> The overall driver has been the life sciences
 • Though the only major commercial success is inkjets

> The initial driver was analytical chemistry
 • Separation of organic molecules

> More recently, this has shifted to biology
 • Manipulation of DNA, proteins, cells, tissues, etc.
Microfluidics examples

> **H-filter**

- Developed by Yager and colleagues at UWash in mid-90’s
- Being commercialized by Micronics

> **An intrinsically microscale device**

- Uses diffusion in laminar flow to separate molecules

Yager et al., Nature 2006

Courtesy of Paul Yager, Thayne Edwards, Elain Fu, Kristen Helton, Kjell Nelson, Milton R. Tam, and Bernhard H. Weigl.

Used with permission.

Microfluidics

> Multi-layer elastomeric microfluidics (Quake, etc.)

 - Use low modulus of silicone elastomers to create hydraulic valves
 - Move liquids around
 - Use diffusivity of gas in elastomer to enable dead-end filling

Images removed due to copyright restrictions.

Fluidigm

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
To design microfluidics we need to understand

- What pressures are needed for given flows
 » How do I size my channels?
- What can fluids do at these scales
 » What are the relevant physics?
- What things get better as we scale down
 » Mixing times, reagent volumes
- What things get worse, and how can we manage them
 » Surface tension
Outline

> Intro to microfluidics

> Basic concepts: viscosity and surface tension

> Governing equations

> Incompressible laminar flow
Viscosity

> When a solid experiences shear stress, it deforms (e.g., strains)
 - Shear Modulus relates the two

> When a fluid experiences shear stress, it deforms continuously
 - Viscosity relates the two

> Constitutive property describing relationship between shear stress [Pa] and shear rate [s⁻¹]

> Units: Pa-s
 - Water: 0.001 Pa-s
 - Air: 10⁻⁵ Pa-s

\[
\tau = \eta \frac{U}{h}
\]

and, in the differential limit

\[
\tau = \eta \frac{\partial U_x}{\partial y}
\]

A related quantity: Kinematic Viscosity

\[
\eta^* = \frac{\eta}{\rho_m}
\]

This is a diffusivity for momentum

\[
\tau = \eta^* \frac{\partial (\rho_m U_x)}{\partial y}
\]

[m²/s]
Surface Tension

> A liquid drop minimizes its free energy by minimizing its surface area. The effective force responsible for this is called **surface tension** (Γ) [J/m2 = N/m]

> The surface tension creates a differential pressure on the two sides of a curved liquid surface

$$ (2\pi r)\Gamma = \Delta P(\pi r^2) $$

solving for ΔP

$$ \Delta P = \frac{2\Gamma}{r} $$
Capillary Effects

> Surface forces can actually transport liquids

> Contact angles determine what happens, and these depend on the wetting properties of the liquid and the solid surface.

\[\rho_m g h \left(\pi r^2\right) = 2\pi r \Gamma \cos \theta \]

\[h = \frac{2\Gamma \cos \theta}{\rho_m g r} \]

Image by MIT OpenCourseWare.
Capillary Effects

> A hydrophobic valve

Hydrophobic barrier

Fill

Stop

Burst

Image removed due to copyright restrictions.
Surface tension

> The scaling as 1/r is what makes dealing with surface tension HARD at the microscale

> Solutions

- Prime with low-surface tension liquids
 - Methanol (Γ=22.6 mN/m) vs. water (Γ=72.8 mN/m)
 - Or use surfactants
- Use CO₂ instead of air
 - Dissolves more readily in water
 - Zengerle et al., IEEE MEMS 1995, p340
- Use diffusivity of gas in PDMS
Outline

> Intro to microfluidics

> Basic concepts: viscosity and surface tension

> Governing equations

> Incompressible laminar flow
Fluid Mechanics Governing Equations

> Mass is conserved \rightarrow Continuity equation

> Momentum is conserved \rightarrow Navier-Stokes equation

> Energy is conserved \rightarrow Euler equation

> We consider only the first two in this lecture
Continuity equation

> Conservation of mass

> In this case, for a control or “fixed” fluid volume
 • both S and V are constant in time

> Point conservation relation is valid for fixed or moving point

\[
\frac{d}{dt} \int_{\text{volume}} b dV = - \int F \cdot n dS + \int g dV
\]

\[
\frac{\partial b}{\partial t} = -\nabla \cdot F + g
\]

Apply the divergence theorem:

\[
\int_{\text{volume}} \left[\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m U) \right] dV = 0
\]

which implies

\[
\frac{\partial \rho_m}{\partial t} + U \cdot \nabla \rho_m + \rho_m \nabla \cdot U = 0
\]
Material Derivative

> The density can change due to three effects:
 • An explicit time dependence (e.g. local heating)
 • Flow carrying fluid through changing density regions
 • Divergence of the fluid velocity

> The first two of these are grouped into the “material derivative”
 • Rate of change for an observer moving with the fluid

Mathematically:

\[\frac{\partial \rho_m}{\partial t} \]

\[\mathbf{U} \cdot \nabla \rho_m \]

\[\rho_m (\nabla \cdot \mathbf{U}) \]
Material Derivative

> The first two of these are grouped into the “material derivative”

\[
\frac{\partial \rho_m}{\partial t} + \mathbf{U} \cdot \nabla \rho_m + \rho_m \nabla \cdot \mathbf{U} = 0
\]

If we define

\[
\frac{D \rho_m}{Dt} = \frac{\partial \rho_m}{\partial t} + \mathbf{U} \cdot \nabla \rho_m
\]

or, more generally, define the operator

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{U} \cdot \nabla
\]

we can write the continuity equation as

\[
\frac{D \rho_m}{Dt} + \rho_m \nabla \cdot \mathbf{U} = 0
\]

If the density is uniform, then in steady state

\[
\nabla \cdot \mathbf{U} = 0
\]
Momentum Conservation

> We want to write Newton’s 2nd Law for fluids

\[
F = \frac{dp}{dt} = \frac{d(mU)}{dt}
\]

> We start with a volume that travels with the fluid

\(\Rightarrow \) contains a constant amount of mass

- Material volume

> Then go to an arbitrary control volume

- Must account for flux of momentum through surface

\[
F = \frac{d}{dt} \int_{V(t)} \rho_m UdV_m + \int_{S(t)} \rho_m U \left[(U - U_s) \cdot n \right] dS
\]
Momentum Conservation

> Pull time derivative into integral

> Cancel terms

> Apply divergence theorem

\[
F = \frac{d}{dt} \int_{V(t)} \rho_m U dV + \int_{S(t)} \rho_m U [(U - U_s) \cdot n] dS
\]

= \int_{V(t)} \frac{\partial}{\partial t} \rho_m U dV + \int_{S(t)} \rho_m U [U_s \cdot n] dS + \int_{S(t)} \rho_m U [(U - U_s) \cdot n] dS

Leibniz’s rule

\[
= \int_{V(t)} \frac{\partial}{\partial t} \rho_m U dV + \int_{S(t)} \rho_m UU \cdot ndS
\]

\[\downarrow\int_{S(t)} a \cdot ndS = \int_{V(t)} \nabla \cdot adV\]
Momentum Conservation

> Final result does not depend on control volume

\[
\begin{align*}
 & = \int_{V(t)} \frac{\partial}{\partial t} \rho_m U dV + \int_{V(t)} \nabla \cdot \rho_m U U dV \\
 & = \int_{V(t)} \left[U \left(\frac{\partial \rho_m}{\partial t} + \nabla \cdot \rho_m U \right) + \rho_m \left(\frac{\partial U}{\partial t} + U \cdot \nabla U \right) \right] dV \\
 & \downarrow \\
 & F = \int_{V} \rho_m \frac{DU}{Dt} dV
\end{align*}
\]
Momentum Conservation

> Add in force terms

> Include body forces (e.g., gravity)

> And surface forces (i.e., stresses)

\[
F_b = \int_{V} \rho_m g \, dV
\]

\[
F_s = \int_{S(t)} s(n) \, dS
\]

\[
s(n) = n \cdot \sigma
\]

\[
F_s = \int_{S(t)} n \cdot \sigma dS
\]

\[
F_s = \int_{V(t)} \nabla \cdot \sigma \, dV
\]

\[
\rho_m \frac{D U}{D t} = \rho_m g + \nabla \cdot \sigma
\]
Navier-Stokes Equations

> Substitute in for stress tensor

\[\sigma = -Pn + \tau \]
\[\nabla \cdot \sigma = -\nabla P + \nabla \cdot \tau \]

> Compressible Newtonian fluid constitutive relation

\[\nabla \cdot \tau \]
\[\downarrow \]
\[\tau = \eta \frac{\partial U_x}{\partial y} \]

> Compressible Navier-Stokes equations

\[\eta \nabla^2 U + \frac{\eta}{3} \nabla (\nabla \cdot U) \]
\[\downarrow \]

\[P^* = P - \rho_m g \cdot r \]
\[\rho_m \frac{DU}{Dt} = -\nabla P + \eta \nabla^2 U + \frac{\eta}{3} \nabla (\nabla \cdot U) + \rho_m g \]
\[\rho_m \frac{DU}{Dt} = -\nabla P^* + \eta \nabla^2 U + \frac{\eta}{3} \nabla (\nabla \cdot U) \]
Navier-Stokes Equations

> Terms in compressible N-S equations

\[\rho_m \left(\frac{\partial \mathbf{U}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{U} \right) = -\nabla P + \eta \nabla^2 \mathbf{U} + \frac{\eta}{3} \nabla (\nabla \cdot \mathbf{U}) + \rho_m \mathbf{g} \]

- time-dependence
- pressure
- compressibility
- inertial
- viscous stresses
- gravity
Dimensionless Numbers

> Fluid mechanics is full of non-dimensional numbers that help classify the types of flow

> Reynolds number is most important

> Reynolds number:
 • The ratio of inertial to viscous effects
 • Ratio of convective to diffusive momentum transport
 • Small Reynolds number means neglect of inertia
 • Flow at low Reynolds number is laminar

\[\text{Re} = \frac{\rho m L_0 U_0}{\eta} = \frac{L_0 U_0}{\eta^*} = \frac{U_0}{\eta^* / L_0} \]

Non-dimensionalized steady incompressible flow

See Deen, Analysis of Transport Phenomena
Outline

> Intro to microfluidics

> Basic concepts: viscosity and surface tension

> Governing equations

> Incompressible laminar flow
Incompressible Laminar Flow

> The Navier-Stokes equation becomes very “heat-flow-equation-like,” although the presence of $\frac{DU}{Dt}$ instead of $\frac{\partial U}{\partial t}$ makes the equation nonlinear, hence HARD.

Navier-Stokes becomes

$$\rho_m \frac{DU}{Dt} = -\nabla P^* + \eta \nabla^2 U$$

to obtain a "diffusion-like" equation:

$$\rho_m \frac{DU}{Dt} = \eta \nabla^2 U - \nabla P^*$$
As aside on heat convection

> Our heat-flow equation looked like

> Compare to incompressible N-S eqn

> If we allow fluid to move—to convect—we can include convection in our heat conservation

> At steady state, we get a relation that allows us to compare convective heat transport to conduction

> This is the Peclet number

> For microscale water flows, L~100 μm, U~0.1 mm/s, D~150×10^{-6} m^2/s

\[
\frac{\partial T}{\partial t} = D \nabla^2 T + \frac{1}{\rho_0} \frac{\partial P}{\partial t} \text{ sources}
\]

\[
\frac{\rho m}{D} \frac{DU}{Dt} = \eta \nabla^2 U - \nabla P^*
\]

\[
\frac{DT}{Dt} = D \nabla^2 T + \frac{1}{\rho_0} \frac{\partial P}{\partial t} \text{ sources}
\]

\[
U \cdot \nabla T = D \nabla^2 T + \frac{1}{\rho_0} \frac{\partial P}{\partial t} \text{ sources}
\]

\[
P_e = \frac{LU}{D} = \frac{(10^{-4} m)(10^{-4} m/s)}{0.15 \cdot 10^{-6} m^2/s} \sim 0.1
\]
Couette or Shear Flow

- Pure shear flow with a linear velocity profile
- No pressure gradient
- Relative velocity goes to zero at the walls (the so-called no-slip boundary condition)

The flow is one-dimensional

$$U = U_x(y)\hat{n}_x$$

$$\rho_m \left(\frac{dU}{dt} + U \cdot \nabla U \right) = \eta \nabla^2 U - \nabla P^*$$

N-S Eqns collapse to the Laplace eqn

$$\frac{\partial^2 U_x}{\partial y^2} = 0$$

$$U_x = c_1 y + c_2$$

B.C.'s: $$U_x(0) = 0, U_x(h) = U$$

$$U_x = \frac{y}{h} U$$

Image by MIT OpenCourseWare.
Adapted from Figure 13.4 in Senturia, Stephen D. Microsystem Design.
Poiseuille Flow

> **Pressure-driven flow through a pipe**
 - In our case, two parallel plates

> **Velocity profile is parabolic**

> **This is the most common flow in microfluidics**
 - Assumes that $h << W$

Solution for Poiseuille Flow

- Assume a uniform pressure gradient along the pipe
- Assume x-velocity only depends on y
- Enforce zero-flow boundary conditions at walls
- Maximum velocity is at center
- Volumetric flowrate is

\[
\frac{dP}{dx} = -K
\]

\[
\frac{\partial^2 U_x}{\partial y^2} = -\frac{K}{\eta}
\]

\[
U_x = \frac{1}{2\eta} \left[y(h - y) \right] K
\]

\[
U_{\text{max}} = \frac{h^2}{8\eta} K
\]

\[
Q = W \int_0^h U_x dy = \frac{Wh^3}{12\eta} K
\]
Lumped Model for Poiseuille Flow

> Can get lumped resistor using the fluidic convention

> Note STRONG dependence on h

> This relation is more complicated when the aspect ratio is not very high…

$$\Delta P = \text{effort} = KL$$

$$\Delta P = \frac{12\eta L}{Wh^3} Q$$

$$\Rightarrow R_{Pois} = \frac{12\eta L}{Wh^3}$$
Development Length

> It takes a certain characteristic length, called the **development length**, to establish the Poiseuille velocity profile.

> This development length corresponds to a development time for viscous stresses to diffuse from wall.

> Development length is proportional to the characteristic length scale and to the Reynolds number, both of which tend to be small in microfluidic devices.

\[
time \approx \frac{L^2}{\eta^*} \approx \text{Re} \frac{L}{U} \\
L_D \approx (\text{time})U \approx \text{Re} L
\]
A note on vorticity

> A common statement is to say that laminar flow has no vorticity

> What is meant is that laminar flow has no turbulence

> Vorticity and turbulence are different

> Can the pinwheel spin?
 • Then there is vorticity

> Demonstrate for Poiseuille flow

\[U_x = \frac{1}{2\eta} [y(h - y)]K \]

\[\omega = \nabla \times \mathbf{U} \]

\[\omega = n_y \frac{\partial U_x}{\partial z} - n_z \frac{\partial U_x}{\partial y} \]

\[\omega = -n_z \frac{K}{2\eta} (h - 2y) \]