CASE STUDY:
MEMS-Based Projection Displays

Carol Livermore*
Massachusetts Institute of Technology

* With thanks to Steve Senturia, from whose lecture notes some of these materials are adapted.
Outline

> Reflection vs. diffraction
 - Texas Instruments DMD reflective display
 - Silicon Light Machines diffractive display

> DMD-based display: the basics
 - What it is
 - How it’s made
 - How it works

> DMD-based display: the details
 - Reliability: why might this fail, and why doesn’t it usually fail?
 - Packaging
 - Test procedures
The Texas Instruments® DMD

1,310,720 mirror pixels
(1280 x 1024)

9 mirror pixels

Image by MIT OpenCourseWare.
Projecting with the DMD

The Silicon Light Machines Approach

Image removed due to copyright restrictions.

![Diagram](Image by MIT OpenCourseWare.)

- With no beam deflection, light is reflected
- With alternate beam deflection, light is strongly diffracted

Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Pixel Operation

Image by MIT OpenCourseWare.
Projecting an Image

Device Wafer

Image removed due to copyright restrictions.
Outline

> Reflection vs. diffraction
 • Texas Instruments DMD reflective display
 • Silicon Light Machines diffractive display

> DMD-based display: the basics
 • What it is
 • How it’s made
 • How it works

> DMD-based display: the details
 • Reliability: why might this fail, and why doesn’t it usually fail?
 • Packaging
 • Test procedures
Timeline of the DMD at TI

1977: Initial explorations (DARPA contract)

1987: Demonstration of the DMD

1992: Is this commercially viable?

1994: Public demonstration of prototype

1996: First units shipped

More than ten million units shipped

Initial focus limited to projectors to establish base market

Jump to TVs, theater projection

Now branching out into other markets: lithography, medical imaging, scientific imaging
The pixels

> One mechanical mirror per optical pixel

> 16 \(\mu \text{m} \) aluminum mirrors, 17 \(\mu \text{m} \) on center

> Address electronics under each pixel

Image removed due to copyright restrictions.
Pixel operation

> Pixels rotate 10 degrees in either direction

> Mirrors pull in

> Motion is limited by mechanical stops

> On: +10 degrees

> Off: -10 degrees

Images removed due to copyright restrictions.
System operation

- Grayscale obtained by alternating each mirror between on and off positions in time
 - Multiple switch events per frame update

- Color obtained by rotating color wheel
 - Mirror switching events are synchronized with wheel

- Color alternative: use three chips

- Other system elements: light source, drive electronics, switching algorithm, projection optics

The product

> MEMS are fun, but products sell

> The core of the product is the “digital display engine”, or DDE
Fabrication considerations

> MEMS parts must be fabricated over SRAM memory cells

> MEMS processing must not damage circuits, including aluminum interconnects

> Polysilicon? High temperature oxides?

> Alternate approach: aluminum as a structural material, with photoresist as a sacrificial layer

> Dry release by plasma strip is a benefit
Fabrication process

- **Substrate with CMDS address circuitry**
 - After spacer-1 patterning
 - Metal-3
 - CMP oxide (via 2 not shown)
 - Spacervia-1

- **Oxide hinge mask**
 - Hinge metal
 - After oxide hinge mask patterning

- **Oxide yoke mask**
 - Yoke (beam) metal
 - After yoke oxide patterning

- **Mirror**
 - Mirror support post
 - After mirror oxide patterning

- **Completed device**
 - Yoke
 - Hinge support post

Image by MIT OpenCourseWare.
Electromechanics: DMD Structure

Image removed due to copyright restrictions.
Torsional Pull-in Model

Cite as: Carol Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Capacitance Modeling

- Calculate capacitance vs. tilt angle
- Fit to cubic polynomial
- Perform conventional pull-in analysis

\[C = \frac{\varepsilon_0WL}{g} \tan \theta_0 \]

\[\frac{C(\theta_0)}{C(0)} \approx 1 + a_1 \theta_0 + a_3 \theta_0^3 \]

\[W^*(\theta_0) = \frac{1}{2} C(\theta_0)V^2 \]

\[\tau = -\frac{\partial W^*(\theta_0)}{\partial \theta_0} \]

\[\theta_0 = -\frac{k_0}{3a_3C_0V^2} \pm \sqrt{\left(\frac{k_0}{3a_3C_0V^2}\right)^2 - \frac{a_1}{3a_3}} \]

\[V_{PI} = \left(\frac{k_0^2}{3a_1a_3C_0^2}\right)^{1/4} \]

Image by MIT OpenCourseWare.
Outline

> Reflection vs. diffraction
 - Texas Instruments DMD reflective display
 - Silicon Light Machines diffractive display

> DMD-based display: the basics
 - What it is
 - How it’s made
 - How it works

> DMD-based display: the details
 - Reliability: why might this fail, and why doesn’t it happen most of the time?
 - Packaging
 - Test procedures
Brainstorm: why might this fail?

> Breakage due to handling/shock
> Stiction (from surface contamination, moisture, or van der Waals forces)
> Light exposure
> Thermal cycling
> Particle effects (electrical short, stuck mirrors, etc.)
> Metal fatigue in hinges
> Hinge memory (permanent deformation)

> Other mechanisms can impact yield right out of the fab: CMOS defects, particles
The ratings

> Breakage due to handling/shock

> Stiction (from surface contamination, moisture, or van der Waals forces)

> Light exposure

> Thermal cycling

> Particle effects (electrical short, stuck mirrors, etc.)

> Metal fatigue in hinges

> Hinge memory (permanent deformation)

> Green: no problem, Yellow: use preventive measures, Red: use preventive measures and cross your fingers
Things not to worry about

> Breakage due to handling/shock
 • Resonant frequencies range from about 100 kHz to the MHz range
 • Macroscopic shocks and vibrations cannot couple to those modes
 • Might worry about the package, though

> Metal fatigue in hinges
 • Initially expected to be a problem
 • Test didn’t show fatigue
 • Subsequent modeling shows that small size has a protective effect
 • Bulk materials: Dislocations accumulate at grain boundaries, causing cracks
 • Thin film material: Structures are one grain thick, so stresses are immediately relieved on the surface
Big picture: some solutions

> **Stiction from surface contamination**
 - Monitor voltage required to lift mirrors out of pull in
 - Too much voltage indicates a possible increase in surface contamination and a need to check the process
 - Include spring tips at the contact point; stored energy provides a mechanical assist

> **Stiction from moisture**
 - Package design (hermeticity, getters)

> **Stiction from van der Waals forces**
 - Anti-stiction passivation layers

> **Light exposure**
 - No fundamental degradation observed after light exposure
 - However, UV exposure slightly increases the rate of stuck pixels
 - Solution: include a UV filter to limit exposure below 400 nm

Image removed due to copyright restrictions.
Particles

> Particles limit yield AND reliability, since loose particles are a failure waiting to happen

> Not many failures, but most are traceable to particles
 * Detailed analysis of each and every returned unit: what went wrong, where did this particle come from, and how can I prevent it?

> Particle sources
 * Die attach adhesive can interact with antistiction coating
 * Debris from die separation
 * Generic handling

> Some elements of the ongoing anti-particle battle
 * Be careful!
 * Particle monitoring
 * Change die attach adhesive
 * Adjust die separation process
Hinge memory and thermal cycling

> The problem: if you leave a mirror actuated in one direction for too long, the metal can creep

> Mirror develops a permanent tilt in that direction and ultimately cannot be switched

> High temperatures are an aggravating factor

> Some solutions:
 • Choose a hinge material that is less prone to creep
 • Tailor the actuating voltage pulses to be able to transition mirrors from a wider range of starting positions (this also offers higher transition speed)
 • Reset pulse jiggles mirror out of position, even if it’s just going to switch back to that position after the reset
 • Design projector system to control temperature
Packaging process I

> Preliminary die separation steps
 • Before release, spin coat a protective layer
 • Die saw partway through the wafer to form cleave lines
 • Clean, removing debris and protective layer

> Test for functionality at the wafer scale
 • Plasma ash to remove the sacrificial photoresist spacer layers
 • Deposit an anti-adhesion passivation layer to prevent stiction of landing tips during testing
 • Test for electrical and optical functionality on a test station

> Break to separate into dies
Packaging process II

> Final preparation for die attach
 • Plasma clean
 • Repassivate to prevent stiction in operation

> Attach die to a ceramic package with an unspecified adhesive

> Wirebond to make electrical connections

> Cap package with a welded-on metal lid containing an optical window to form a hermetic seal

> Include an unspecified getter to control moisture, along the lines of a zeolite

> Moisture control not only limits stiction, but impacts hinge memory as well
The package

- Ceramic package
- Heat sink for temperature control
- Dust control critical to prevent future failures
- Package validation:
 accelerated lifetime tests (humidity and up to 100C) on a selection of devices

Image removed due to copyright restrictions.
Testing

> If one mirror on a chip doesn’t work, the projector is broken

> For good reliability, the failure rate of projectors, EVER, should be well below 1%

> Question: how do you ensure that you’re not sending out a batch of projectors that are just waiting to fail?

> Testing with more than just binary information

> Custom tool: the MirrorMaster
 • Drive DMD with electronics, inspect with a CCD camera on a microscope

> Careful protocols
Bias Adhesion Mapping

> Gradually increase voltage to actuate mirrors, capturing an image of mirrors at each step

> Distribution of switching and release voltages is an early warning system for structural variations, surface contamination, process problems

Image removed due to copyright restrictions.
Conclusions

- Intuition can be deceiving. Who would have thought that you could get reliability at such an immense scale?

- If you want people to get excited about your MEMS technology, show them the product.

- If the MEMS part alone doesn’t meet the spec, ask yourself if the overall system can be designed to meet the spec.
 - Hinge memory was partly cured by materials and partly by design of the control system
For more information, and credits

> Some of these images are from the Texas Instruments web site
 - http://www.dlp.com/

> Some are from these articles: