
Question:
- Can CT be reduced using SW processing?
- At what cost? ⇒ in high volume setting.

Approach:
- Conventional Fabs vs. Single Wafer Fabs
 - Survey to check hypothetical fab
 - Batch & standalone tools ⇒ integrated SW tools
 - Simulate CT, min CT
 - Add cost modeling

Changes: Conventional → Alternative
- Batch furnaces → SW Thermal Processors
- Wet benches in BEOL → SW wet clean cells
- Litho, Plasma, & Thermal processes integrated
- In-line process monitors → in-situ monitors

Key Points:

- Move beyond TQM - Total Quality Management. New focus on TPM - Total Productive Maintenance.
- Need a way to monitor and identify where productive time is lost.
- Should make these measurements so that info can also be used for planning/scheduling.

Basic Metrics in Use Today

1. **Equipment Availability**
 - % time machine capable or actually performing work
 - Actual unavailable time is "down time".
2. **Equipment Utilization**
 - % total time actually engaged in processing.

But

- Availability not % of time \(\Rightarrow\) does not count idle time losses.
- Utilization counts idle loss, but \(\Rightarrow\) does not count speed losses.

e.g. 100% utilized but not provide 100% theoretical productivity.

Key Idea

\(\Rightarrow\) Should compare production time against some standard
"should take" time!
OVERALL EQUIPMENT EFFICIENCY

\[\text{OEE} = \frac{S}{T} \]

- \(S = \) "should take" time for work completed on machine, based on theoretical rates.
- \(T = \) observation period

- This aggregate measure is relatively easy to compute, BUT...
 - does not help in IDENTIFYING where losses occur or improvements needed
 - \ (~20\% - 60\% \) \(\Rightarrow \) substantial room for improvement

DATA COLLECTION REQUIREMENTS

1. Equipment Tracking DB: - changes in equip. state
2. WIP Tracking DB: - actual lots produced
3. Machine Event Logs: - recipes performed
 - # units processed
 - elapsed time in various cycles
4. Signal for when actually processing

MINIMUM NEEDED:

- Total down time, prod. time, idle time
- Total # lots started into processing
 - Total # lots/loafer completing each step on each tool
- Sequence of lots - calculate batch sizes between equip. changes (used for capacity, not OEE)
EQUIPMENT STATE DEFINITIONS

SEMI EID

1. NonSched Time
2. Down Time
3. Standby Time
4. Prod Time
5. Engineering Time

This Paper

1. Down Time
 - down EID
 - ENG EID
 + 2. Idle Time
 + 3. Production Time
 = Total Time - Unsched. Time

NOTES

EID: Changeovers & Setups ⇒ Down Time
HERE: Include ⇒ Prod. Time

* Idle Time ⇒ Waiting/due to scheduling

HERE: Down Time
- Failures & Repairs
- Delays for "
- Follow-on Calibration, Quals, etc.
- PM
- Source Replenishments
- Scheduled Cleanas
- Engineering

ISSUE: Hard to track/account for short duration events ⇒ rec. automation where possible.
OEE CALCULATION

1. **DT** = % time lost for **DOWNTIME**
2. **IT** = % time lost for **IDLE TIME**
3. **Productive Losses** ??

RE = A **RATE EFFICIENCY** - inferred machine speed

DE = B **DEMAND EFFICIENCY** - losses for processing wrong product

RQA = C **RATE OF QUALITY** - losses for product scrap

\[
OEE = \left(\frac{1}{1} - DT - IT \right) (RE) (DE) (RQA)
\]

A RATE EFFICIENCY - ratio of **observed machine process time** to **theoretical machine rate**

Ex: I/I

\[
\text{Beam-time} = 1.6 \times 10^{-13} \times \text{Dose} \\
\times \left(\frac{\text{Area}}{\text{Beam-current}} \right) \times \frac{1}{60}
\]

\[\Rightarrow \text{TIE to RECIPE DATABASE!}\]
2. **DEMAND EFFICIENCY**

- When production control is weak - may process products NOT planned or demanded

\[DE = \frac{\sum_{i=1}^{n} \min (WS_i, PP_i) (EPT_i)}{\sum_{i=1}^{n} (WS_i)(EPT_i)} = \% \text{ time spent producing demanded products} \]

\(\text{"Effective Processing Time" (TBA)} \)

- Capture effect of changeovers, load sizes, rework that vary by product/step

3. **RATE OF QUALITY**

- Account for losses due to SCRAP or REWORK

\[RQ = \frac{\sum_{i=1}^{n} (WF_i)(EPT_i)}{\sum_{i=1}^{n} (WS_i)(EPT_i)} \]

\(\text{"Wafers Finishing" Step} \)

\(\text{Wafers Starting Step} \)

- Note: this is a MACHINE oriented quality loss measure, not a PROCESS oriented measure.

Scrap rate is just \(\frac{WF_i}{WS_i} \); need these for LINE YIELD calculations
EXAMPLES / CASES

1. DATA ACQUISITION
 a. LOW-TECH: Paper Forms
 - Harris
 - NEC = 15' grid
 b. HIGH-TECH: Machine Sensing
 - Harris I/I room: attach "EKG" to tool
 - Added process time calculation

2. HARRIS RESULTS
 - Early 1991:
 UTILIZE
 OEE ~ 61% - 76%
 RE = 72%
 - OEE = 44-54% - even if 100% RE, 100% RQ
 - Careful attention ⇒ increased I/I capacity
 - NET Results: On-time Delivery 79% 91
 95% 92-94

3. "NAMELESS" RESULTS
 - Compare utilization at various factories
 ⇒ best practices
 - UTILIZATION "increasing"
 but WAFER OUTPUT FLAT!
 - Save up
 ⇒ aggregate machine speed (e.g. OEE)
 - Problem in report may scheme
 ⇒ utilization does not account for all efficiency losses
CONCLUSION: "CLOSED LOOP" Measurement Needed!

- OEE requires TPT knowledge; w/ Theoretical times, can compute "earned" utilization

- If include Rate Efficiency (RE), then if DT or IT are unreported, they get lumped into RE

⇒ OEE correctly stated, regardless of quality of DT & IT reporting

SUB-PLOT: W/ many of same numbers, can calculate a

CAPACITY EQUIP. EFFICIENCY

Like OEE, except excludes losses for SCHEDULED IDLE TIME

... more appropriate for planning/scheduling

These allow tracking of CAPACITY losses and potential gains.
EQUIPMENT EFFICIENCY
BENCHMARKS

OE

EQUIP AVAILABILITY (1 - DT - IT)

UTILIZATION OF AVAIL TIME (OE - RO)

RATE EFFICIENCY (RE)

1. Reported Availability
 Graphs
 - 5X steppers
 - I/I
 - metallization
 @ memory, logic, ASIC

 ⇒ nearly identical availability for steppers
 BUT ⇒ very different throughputs

2. STEPPERS: RATE EFFICIENCY differentiates
 ⇒ time spent idle waiting for sample wafer inspects
 ION IMPLANTERS: AVAILABILITY
 ⇒ time spent on chucks
 METALIZATION: AVAILABILITY

C3M-31, 8/96
Key Practices

1. Data Collection
 - tracking UTL = steps
 - tracking AVAIL = implant, DTR, metal

2. Training
 - in-house equip, engineering
 - TPM training

3. Equip. Improvement Efforts
 - CIT (Continuous Improvement Teams)

4. Maintenance Strategy
 - operator maint
 - vendor interaction

Fab Characteristics

1. Fab Size
 - Availability
 - Large Size
 - Not come.

2. Fab Focus
 = larger throughputs
Correlation Coefficients for Equipment Practices vs. Equipment Performance

<table>
<thead>
<tr>
<th>Practice</th>
<th>Stepper avail.</th>
<th>Implanter avail.</th>
<th>Metal avail.</th>
<th>Stepper t'put</th>
<th>Implanter t'put</th>
<th>Metal t'put</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track down time</td>
<td>-0.221</td>
<td>0.111</td>
<td>0.127</td>
<td>0.171</td>
<td>0.342</td>
<td>0.336</td>
</tr>
<tr>
<td>Track utilization</td>
<td>-0.323</td>
<td>0.040</td>
<td>0.059</td>
<td>0.407</td>
<td>0.349</td>
<td>0.316</td>
</tr>
<tr>
<td>Track setup time</td>
<td>-0.331</td>
<td>0.108</td>
<td>0.233</td>
<td>0.170</td>
<td>0.267</td>
<td>0.210</td>
</tr>
<tr>
<td>Track OEE</td>
<td>-0.017</td>
<td>0.167</td>
<td>-0.013</td>
<td>0.347</td>
<td>0.150</td>
<td>-0.112</td>
</tr>
<tr>
<td>Auto-capture perf. data</td>
<td>-0.087</td>
<td>0.007</td>
<td>0.164</td>
<td>0.352</td>
<td>0.231</td>
<td>-0.103</td>
</tr>
<tr>
<td>Auto-monitoring</td>
<td>-0.087</td>
<td>0.007</td>
<td>0.164</td>
<td>0.352</td>
<td>0.231</td>
<td>-0.103</td>
</tr>
<tr>
<td>Compare with other fabs</td>
<td>-0.168</td>
<td>0.273</td>
<td>-0.028</td>
<td>-0.216</td>
<td>0.057</td>
<td>-0.242</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM training of techs</td>
<td>-0.454</td>
<td>0.016</td>
<td>0.200</td>
<td>0.415</td>
<td>0.345</td>
<td>0.036</td>
</tr>
<tr>
<td>Vendor school for techs</td>
<td>0.007</td>
<td>-0.071</td>
<td>-0.266</td>
<td>-0.213</td>
<td>-0.198</td>
<td>-0.241</td>
</tr>
<tr>
<td>TPM training of oprs</td>
<td>-0.481</td>
<td>-0.021</td>
<td>0.226</td>
<td>0.374</td>
<td>0.384</td>
<td>0.064</td>
</tr>
<tr>
<td>Vendor school for oprs</td>
<td>0.064</td>
<td>0.136</td>
<td>0.406</td>
<td>0.232</td>
<td>0.222</td>
<td>0.096</td>
</tr>
<tr>
<td>Eqpt improvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of equip. engineers</td>
<td>-0.478</td>
<td>-0.044</td>
<td>0.047</td>
<td>0.467</td>
<td>0.572</td>
<td>0.399</td>
</tr>
<tr>
<td>Joint proc. & eqpt. engng.</td>
<td>-0.405</td>
<td>0.085</td>
<td>0.052</td>
<td>0.253</td>
<td>0.323</td>
<td>0.405</td>
</tr>
<tr>
<td>CIT tech/opr teams</td>
<td>-0.368</td>
<td>0.089</td>
<td>0.187</td>
<td>0.363</td>
<td>0.441</td>
<td>0.107</td>
</tr>
<tr>
<td>CIT eng/tech teams</td>
<td>-0.110</td>
<td>0.133</td>
<td>-0.110</td>
<td>0.076</td>
<td>0.448</td>
<td>0.167</td>
</tr>
<tr>
<td>Eqpt modifications</td>
<td>-0.272</td>
<td>0.030</td>
<td>0.143</td>
<td>0.493</td>
<td>0.604</td>
<td>0.537</td>
</tr>
<tr>
<td>Share mods w/ other fabs</td>
<td>-0.018</td>
<td>0.174</td>
<td>0.151</td>
<td>-0.274</td>
<td>0.373</td>
<td>0.027</td>
</tr>
<tr>
<td>TPM 5 S improvements</td>
<td>-0.148</td>
<td>-0.089</td>
<td>-0.070</td>
<td>0.254</td>
<td>0.225</td>
<td>0.166</td>
</tr>
<tr>
<td>Setup time reduction</td>
<td>-0.208</td>
<td>0.135</td>
<td>-0.052</td>
<td>0.322</td>
<td>0.508</td>
<td>0.186</td>
</tr>
<tr>
<td>Mice strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of techs per machine</td>
<td>0.008</td>
<td>0.114</td>
<td>-0.084</td>
<td>-0.315</td>
<td>0.117</td>
<td>0.011</td>
</tr>
<tr>
<td>Eqpt owner program</td>
<td>0.000</td>
<td>0.309</td>
<td>0.309</td>
<td>0.144</td>
<td>0.300</td>
<td>0.412</td>
</tr>
<tr>
<td>Opr mtce</td>
<td>-0.361</td>
<td>0.162</td>
<td>0.048</td>
<td>0.371</td>
<td>0.312</td>
<td>-0.042</td>
</tr>
<tr>
<td>Vendor contract mtce</td>
<td>-0.021</td>
<td>0.020</td>
<td>-0.428</td>
<td>-0.231</td>
<td>-0.270</td>
<td>-0.055</td>
</tr>
<tr>
<td>Nearby on-call vendors</td>
<td>0.146</td>
<td>0.192</td>
<td>-0.042</td>
<td>-0.161</td>
<td>0.374</td>
<td>0.057</td>
</tr>
<tr>
<td>Reg vendor reviews</td>
<td>0.395</td>
<td>0.357</td>
<td>0.158</td>
<td>-0.107</td>
<td>0.231</td>
<td>0.395</td>
</tr>
<tr>
<td>Coord rev w/ other fabs</td>
<td>0.094</td>
<td>0.174</td>
<td>0.069</td>
<td>-0.420</td>
<td>0.191</td>
<td>-0.157</td>
</tr>
<tr>
<td>Fab characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory utilization</td>
<td>-0.178</td>
<td>0.112</td>
<td>0.061</td>
<td>0.427</td>
<td>0.046</td>
<td>0.279</td>
</tr>
<tr>
<td>Wafer starts per week</td>
<td>-0.445</td>
<td>0.100</td>
<td>0.103</td>
<td>0.605</td>
<td>0.665</td>
<td>0.410</td>
</tr>
<tr>
<td>Wfr strts per proc flow</td>
<td>-0.115</td>
<td>0.091</td>
<td>0.178</td>
<td>0.440</td>
<td>0.476</td>
<td>0.292</td>
</tr>
<tr>
<td>Wfr strts per die type</td>
<td>0.047</td>
<td>0.036</td>
<td>-0.003</td>
<td>0.239</td>
<td>0.231</td>
<td>0.088</td>
</tr>
</tbody>
</table>