Introduction to Models and Properties

Computer Science and Artificial Intelligence Laboratory
MIT
Armando Solar-Lezama

Nov 23, 2015
Recap

<table>
<thead>
<tr>
<th></th>
<th>Type Inference</th>
<th>Symbolic Execution</th>
<th>Abstract Interpretation</th>
<th>Model Checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties of variables</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Flexible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Push-button</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Model Checking Today

Hardware Model Checking
- part of the standard toolkit for hardware design
 • Intel has used it for production chips since Pentium 4
 • For the Intel Core i7, most pre-silicon validation was done through formal methods (i.e. Model Checking + Theorem Proving)
- many commercial products
 • IBM RuleBase, Synopsys Magellan, ...

Software Model Checking
- Static driver verifier now a commercial Microsoft product
- Java PathFinder used to verify code for mars rover

This doesn’t mean Model Checking is a solved problem
- Far from it
Model Checking Genesis

The paper that started it all

- Clarke and Emerson, *Design and Synthesis of Synchronization Skeletons using branching time temporal logic*

“Proof Construction is Unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic”
Two important developments preceded this paper

- Verification through exhaustive exploration of finite state models
 • G. V. Bochmann and J. Gecsei, *A unified method for the specification and verification of protocols*, Proc. IFIP Congress 1977

- Development of Linear Temporal Logic and its application to specifying system properties
 • A. Pnueli, *The temporal semantics of concurrent programs*. 1977
Model Checking

The model checking approach
(as characterized by Emerson)

- Start with a program that defines a finite state graph M
- Search M for patterns that tell you whether a specification f holds
- Pattern specification is flexible
- The method is efficient in the sizes of M and hopefully also f
- The method is algorithmic
So what exactly is a model?

Remember our friend ⊢?

- What does this mean? ⊢ x ∧ y ⇒ x
 - The statement above can be established through logical deduction
 - Axiomatic semantics and type theory are deductive
 - The program, together with the desired properties make a theorem
 - We use deduction to prove the theorem

- What about this; is it true? ⊢ x + y == 5
 - We can not really establish this through deduction
 - We can say whether it’s true or false under a given model
 - \[[x=3, y=2] \models x + y == 5\]

You have seen this symbol too ⊨

- In operational semantics, the variable assignments were the model
- The program behavior was the theorem we were trying to prove under a given model
Basic Notions of Model Theory

Consider the following sentence:
- \(S := \text{The class today was awesome} \)

Is this sentence true or false?
- that depends
 - What class is “the class”? What day is “today”?

We can give this sentence an Interpretation
- \(I := \text{The class is 6.820, Today is Tuesday Nov 22} \)

When an interpretation \(I \) makes \(S \) true we say that
- \(I \) satisfies \(S \)
- \(I \) is a model of \(S \)
- \(I \models S \)
The model checking problem

We are interested in deciding whether $I \models S$ for the special case where

- I is a Kripke structure
- S is a temporal logic formula

Today you get to learn what each of these things are

But the high level idea is:

- Unlike axiomatic semantics, where the program was part of the theorem,
- The program will now be the *model*
 - Well, not the program directly, but rather a kripke structure representing the program
Kripke Structures as Models

Kripke structure is a FSM with labels

Kripke structure = (S, S0, R, L)

- \(S \) = finite set of states
- \(S0 \subseteq S \) = set of initial states
- \(R \subseteq S \times S \) = transition relation
- \(L : S \rightarrow 2^{AP} \) = labels each state with a set of atomic propositions
Microwave Example

- \(S = \{s_1, s_2, s_3, s_4\} \)
- \(S_0 = \{s_1\} \)
- \(R = \{ (s_1, s_2), (s_2, s_1), (s_1, s_4), (s_4, s_2), (s_2, s_3), (s_3, s_2), (s_3, s_3) \} \)
- \(L(s_1) = \{-\text{close}, -\text{start}, -\text{cooking}\} \)
- \(L(s_2) = \{\text{close}, -\text{start}, -\text{cooking}\} \)
- \(L(s_3) = \{\text{close}, \text{start}, \text{cooking}\} \)
- \(L(s_4) = \{-\text{close}, \text{start}, -\text{cooking}\} \)

Can the microwave cook with the door open?
Kripke structures describe computations

A Kripke structure can describe an infinite process

- We can interpret it as an infinite tree
- We need a language to describe properties of paths down the computation tree
Linear Temporal Logic

Let π be a sequence of states in a path down the tree

- $\pi := s_0, s_1, s_2, \ldots$
- Let π_i be a subsequence starting at i

We are going to define a logic to describe properties over paths
Properties over states

State Formulas

- Can be established as true or false on a given state
- If \(p \in \{\text{AP}\} \) then \(p \) is a state formula
- if \(f \) and \(g \) are state formulas, so are \((f \land g) \), \(\neg f \), \(f \lor g \)
- Ex. \((\neg \text{closed} \land \text{cooking}) \)
For paths

Path formulas

- a state formula p is also a path formula
 - $p(\pi_i) := p(s_i)$

- boolean operations on path formulas are path formulas
 - f and $g(\pi_i) := f(\pi_i)$ and $g(\pi_i)$

- path quantifiers
 - $G f (\pi_i) := \text{globally } f (\pi_i) = \forall k \geq i \ f (\pi_k)$ (may abbreviate as \square)
 - $F f (\pi_i) := \text{eventually } f (\pi_i) = \exists k \geq i \ f (\pi_k)$ (may abbreviate as \Diamond)
 - $X f (\pi_i) := \text{next } f (\pi_i) = f (\pi_{i+1})$ (may abbreviate as \circ)
 - $f U g (\pi_i) := \text{f until } g = \exists k \geq i \text{ s.t. } g(\pi_k) \text{ and } f(\pi_j) \text{ for } i \leq j < k$

Given a formula f and a path π,

- if $f(\pi)$ is true, we say that $\pi \models f$
Examples

If you submit your homework (submit) you eventually get a grade back (grade)

- \(G (\text{submit} \Rightarrow F \text{ grade}) \)

You should get your grade before you submit the next homework

- \(G (\text{submit} \Rightarrow X (\neg \text{submit} U \text{ grade})) \)
 - What’s wrong with \(G (\text{submit} \Rightarrow (\neg \text{submit} U \text{ grade})) \)?

If assignment \(i \) was submitted before drop date, you should get your grade before drop date

- \((G(\text{submit}_i \Rightarrow F \text{ dropDate})) \Rightarrow ((G (\text{grade}_i \Rightarrow F \text{ dropDate}))) \)
 - and \(G (\text{submit} => F \text{ grade}) \)