The following problems are intended to help you understand the notions of specification and implementation. Show that you can use the high-level features of Spec effectively, and don’t worry about getting every detail of syntax exactly right. You will need to familiarize yourself with the Spec language before writing the solutions. The best source is Handout 3 (Introduction to Spec), plus Section 9 of Handout 4 (Spec Reference Manual); you should not need to read the rest of Handout 4. You will also need to understand what it means to implement a spec. Handout 3 explains this, and Handout 5 gives some more examples of specs and implementations.

In each problem you are expected to write a) specification of the problem and b) implementation of the specification. You should write both specification and implementation in the Spec language. Try to avoid using loops or recursion to write the specs.

Each specification should be a Spec function (FUNC) that accepts input and output values and returns a Bool value. The specification should formalize the condition between the input and output values of the problem. Make your specification as clear as possible taking advantage of the mathematical expressions and the nondeterminism in the Spec language. Do not worry about the implementability or the efficiency in this part of the problem, instead focus on clarity. If you need an algorithm to do one of the implementations, look it up in an algorithms book.

Each implementation should be a Spec atomic procedure (APROC) that accepts input values and returns the output values. Each implementation in this problem set should depend only on the parameters explicitly passed as arguments to APROC and not on other parts of the program state. Make your implementation deterministic: when called with same arguments, the procedure should return the same result. Your goal in this part is to capture the essential idea of a deterministic implementation that could easily be translated to a language such as sequential Java.

There are four problems in this problem set; please turn in each problem on a separate sheet of paper. Also give the amount of time you spend on each problem.

Problem 1: Matrix Multiplication

A product of two matrices \([a_{ij}]\) and \([b_{ij}]\) is a matrix \([c_{ij}]\) with \(c_{ij} = \sum_k a_{ik}b_{kj}\). We can represent square integer matrices in Spec as functions from indices to integers:

\[
\text{TYPE Range} = \text{IN} \ 0 \ldots \ n-1 \\
\text{Matrix} = (\text{Range,Range}) -> \text{Int}
\]

a) Write a Spec function \textit{isMatMul} that accepts matrices \textit{ma}, \textit{mb}, \textit{mc} and tests whether the matrix \textit{mc} is a product of the matrices \textit{ma} and \textit{mb}.

\[
\text{FUNC isMatMul(ma: Matrix, mb: Matrix, mc: Matrix) -> Bool = ...}
\]

Do not use loops or recursion in this specification.

b) Write a Spec atomic procedure \textit{MatMul} that uses loops to compute the product of two matrices.

\[
\text{APROC MatMul(ma: Matrix, mb: Matrix) -> Matrix = ...}
\]
Problem 2: Distribution of Prime Numbers

Let \(x \) and \(y \) be positive integers.
We say that \(y \) is a divisor of \(x \) if the division of \(x \) by \(y \) yields no remainder.
We say that \(x \) is a prime number if \(x > 1 \) and the set of the divisors of \(x \) is \(\{1, x\} \).

Theorem [Chebyshev] For every integer \(n > 1 \) there exists a prime number \(p \) such that \(n < p < 2n \).

a) Write a Spec function `isPrimeBetween` that checks if \(p \) is a prime number between \(n \) and \(2n \).

```plaintext
FUNC isPrimeBetween(p: Int, n: Int) -> Bool = ...
```

b) Write a Spec atomic procedure `primeBetween` that, given \(n \), finds a prime \(p \) such that \(n < p < 2n \).

```plaintext
APROC primeBetween(n: Int) -> Int = ...
```

c) Show an example of positive integers \(n \) and \(p \) such that `isPrimeBetween(p,n)` is true, but your implementation in the b) part never returns \(p \) when called with `primeBetween(n)`.

Problem 3. Shortest Path

A directed graph is a binary relation on some set. See Section 9 of Handout 4 for the definitions of some graph operations. Let graph nodes be defined as

```plaintext
TYPE Node = IN 1 .. n
```

a) Write a Spec function `isShortestPath` that tests whether \(path \) is the shortest path from \(n1 \) to \(n2 \) in the graph \(g \).

```plaintext
FUNC isShortestPath(g: Graph[Node].G, n1: Node, n2: Node, path: SEQ Node) -> Bool = ...
```

b) Write a Spec procedure `shortestPath` that given a graph \(g \) and two nodes \(n1 \) and \(n2 \) finds a shortest path from node \(n1 \) to node \(n2 \). Make sure that your solution implements the specification in part a), is deterministic, and has polynomial time complexity.

```plaintext
APROC shortestPath(g: Graph[Node].G, n1: Node, n2: Node) -> SEQ Node = ...
```

c) Show an example of a graph \(g \), nodes \(n1 \) and \(n2 \) and path \(path \) such that the value of the expression `isShortestPath(g,n1,n2,path)` is true, but your implementation in part b) never returns \(path \) as a result if invoked with the procedure call `shortestPath(g,n1,n2)`.