The Hindley-Milner Type System

Arvind
Laboratory for Computer Science
M.I.T.

September 25, 2002

http://www.csg.lcs.mit.edu/6.827

Outline

• General issues
• Type instances
• Type Unification
• Type Generalization
• A formal type system
What are Types?

• A method of classifying objects (values) in a language
 \(x :: \tau \)?

 says object \(x \) has type \(\tau \) or object \(x \) belongs to a type \(\tau \)?

• \(\tau \) denotes a set of values.

 This notion of types is different from languages like C, where a type is a storage class specifier.

Type Correctness

• If \(x :: \tau \), then only those operations that are appropriate to set \(\tau \) may be performed on \(x \).

• A program is type correct if it never performs a wrong operation on an object.

 - Add an \textit{Int} and a \textit{Bool}
 - Head of an \textit{Int}
 - Square root of a \textit{list}
Type Safety

- A language is **type safe** if only **type correct** programs can be written in that language.

- Most languages are **not** type safe, i.e., have “holes” in their type systems.

 - **Fortran:** Equivalence, Parameter passing
 - **Pascal:** Variant records, files
 - **C, C++:** Pointers, type casting

 However, **Java, CLU, Ada, ML, Id, Haskell, pH etc. are type safe.**

Type Declaration vs Reconstruction

- Languages where the user must declare the types
 - **CLU, Pascal, Ada, C, C++, Fortran, Java**

- Languages where type declarations are not needed and the types are reconstructed at run time
 - **Scheme, Lisp**

- Languages where type declarations are generally not needed but allowed, and types are reconstructed at compile time
 - **ML, Id, Haskell, pH**

A language is said to be **statically typed** if type-checking is done at compile time.
Polymorphism

- In a *monomorphic language* like Pascal, one defines a different length function for each type of list.
- In a *polymorphic language* like ML, one defines a polymorphic type (list t), where t is a type variable, and a *single function* for computing the length.
- pH and most modern functional languages have polymorphic objects and follow *the Hindley-Milner type system.*

Type Instances

The type of a variable can be instantiated differently within its lexical scope.

```
let id = \x.x
    in
    ((id₁ 5), (id₂ True))

id₁ :: ?
id₂ :: ?
```

Both id₁ and id₂ can be regarded as instances of type ?
Type Instances: another example

```
let
  twice :: (t -> t) -> t -> t
  twice f x = f (f x)
in
  twice1 twice2 (plus 3) 4
```

```
twice1 :: ?

  twice2 :: ?
```

Type Instantiation:
\(\lambda\)-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated differently.

```
let
  twice f x = f (f x)
in
  twice twice (plus 3) 4
```

```
VS.

let
  twice f x = f (f x)
  foo g = (g g (plus 3)) 4
in
  foo twice
```

Generic vs. Non-generic type variables
A mini Language
to study Hindley-Milner Types

Expressions

\[E ::= C \quad \text{constant} \]
\[x \quad \text{variable} \]
\[\lambda x. E \quad \text{abstraction} \]
\[(E_1, E_2) \quad \text{application} \]
\[\text{let } x = E_1 \text{ in } E_2 \quad \text{let-block} \]

- There are no types in the syntax of the language!
- The type of each subexpression is derived by the Hindley-Milner type inference algorithm.

Types

\[\tau ::= t \quad \text{base types (Int, Bool ..)} \]
\[t \quad \text{type variables} \]
\[\tau_1 \rightarrow \tau_2 \quad \text{Function types} \]

Type Inference Issues

- What does it mean for two types \(\tau_a \) and \(\tau_b \) to be equal?
 - Structural Equality

 Suppose \(\tau_a = \tau_1 \rightarrow \tau_2 \)
 \(\tau_b = \tau_3 \rightarrow \tau_4 \)
 Is \(\tau_a = \tau_b \)?

- Can two types be made equal by choosing appropriate substitutions for their type variables?
 - Robinson's unification algorithm

 Suppose \(\tau_a = t_1 \rightarrow \text{Bool} \)
 \(\tau_b = \text{Int} \rightarrow t_2 \)
 Are \(\tau_a \) and \(\tau_b \) unifiable?

 Suppose \(\tau_a = t_1 \rightarrow \text{Bool} \)
 \(\tau_b = \text{Int} \rightarrow \text{Int} \)
 Are \(\tau_a \) and \(\tau_b \) unifiable?
Simple Type Substitutions

Types
\[\tau ::= t \quad \text{base types (Int, Bool ..)} \]
\[| \quad t \quad \text{type variables} \]
\[| \quad \tau_1 \rightarrow \tau_2 \quad \text{Function types} \]

A substitution is a map
S : Type Variables --> Types

\[S = [\tau_1 \rightarrow t_1, \ldots, \tau_n \rightarrow t_n] \]

\[\tau' = S \tau \]
\n\tau' is a Substitution Instance of \tau

Example:
\[S = [(t \rightarrow \text{Bool}) / t_1] \]
\[S(t_1 \rightarrow \text{t}_1) = ? \]

Substitutions can be composed, i.e., \(S_2 \circ S_1 \)

Example:
\[S_1 = [(t \rightarrow \text{Bool}) / t_1] \quad ; \quad S_2 = [\text{Int} / t] \]

\[S_2 \circ S_1 \ (t_1 \rightarrow \text{t}_1) = ? \]

Unification

An essential subroutine for type inference

\(\text{Unify}(\tau_1, \tau_2) \) tries to unify \(\tau_1 \) and \(\tau_2 \) and returns a substitution if successful

\[\text{def Unify}(\tau_1, \tau_2) = \]
\[\text{case } (\tau_1, \tau_2) \text{ of} \]
\[(\tau_1, \tau_2) = [\tau_1 / \tau_2] \]
\[(t_1, t_2) = \text{if } (\text{eq? } t_1, t_2) \text{ then } [] \text{ else fail} \]
\[(\tau_1 \rightarrow \tau_2, \tau_2 \rightarrow \tau_2) = \text{let } S_1=\text{Unify}(\tau_{11}, \tau_{21}) \]
\[S_2=\text{Unify}(S_1(\tau_{12}), S_1(\tau_{22})) \]
\[\text{in } S_2 S_1 \]
\[\text{otherwise } = \text{fail} \]

Does the order matter?
Inferring Polymorphic Types

\[
\text{let } \quad \text{id} = \lambda x. x \\
\text{in } \quad \ldots \text{(id True)} \ldots \text{(id 1)} \ldots
\]

Constraints:

\[
\begin{align*}
\text{id} & : t_1 \rightarrow t_1 \\
\text{id} & : \text{Int} \rightarrow t_2 \\
\text{id} & : \text{Bool} \rightarrow t_3
\end{align*}
\]

Solution: Generalize the type variable:

\[
\text{id} : \forall t_1. t_1 \rightarrow t_1
\]

Different uses of a generalized type variable may be instantiated differently

\[
\begin{align*}
\text{id}_2 & : \text{Bool} \rightarrow \text{Bool} \\
\text{id}_1 & : \text{Int} \rightarrow \text{Int}
\end{align*}
\]

Generalization is Restricted

\[
f = \lambda g. \ldots (g \text{ True}) \ldots (g \text{ 1}) \ldots
\]

Can we generalize the type of \(g \) to \(\forall t_1, t_2. t_1 \rightarrow t_2 \) ?

There will be restrictions on \(g \) from the environment, the place of use, which may make this deduction unsound (incorrect).

Only generalize “new” type variables, the variables on which all the restrictions are visible.
A Formal Type System

Types
\[\tau \ ::= \ i \ | \ t \ | \ \tau \rightarrow \tau \]

Type Schemes
\[\sigma \ ::= \ \tau \? \ | \ \forall \ t. \sigma \]

Type Environments
\[\text{TE} ::= \text{Identifiers} \rightarrow \text{Type Schemes} \]

Note, all the \(\forall \)'s occur in the beginning of a type scheme, i.e., a type \(\tau \) cannot contain a type scheme \(\sigma \).

A type \(\tau \) is said to be **polymorphic** if it contains a type variable \(t \).

Example TE
\[
\{ + :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}, \\
f :: \forall t. t \rightarrow t \rightarrow \text{Bool} \}
\]

Free and Bound Variables

σ = \(\forall \ t_1..t_n. \tau \)

BV(σ) = \{ \(t_1, ..., t_n \) \}

FV(σ) = \{ type variables of \(\tau \) \} - \{ \(t_1, ..., t_n \) \}

The definitions extend to Type Environments in an obvious way.

Example:
\[
\sigma ? = \forall t. (t_1 \rightarrow t_2)
\]

FV(σ) =
BV(σ) =
Type Substitutions

A substitution is a map
S : Type Variables --> Types
S = [τ_i/ t_1, t_2, ..., t_n]

τ' = S τ

τ' is a Substitution Instance of τ

σ' = S σ

Applied only to FV(σ), with renaming of BV(σ) as necessary

similarly for Type Environments

Examples:
S = [(t_2 --> Bool) / t_1]
S(t_1 --> t_1) = (t_2 --> Bool) --> (t_2 --> Bool)
S(∀t_1.t_1 --> t_2) = ?
S(∀t_2.t_1 --> t_2) = ?

Substitutions can be composed, i.e., S_2 S_1

Instantiations

• Type scheme σ can be instantiated into a type τ' by substituting types for BV(σ), that is,
 τ = S τ

- τ' is said to be an instance of σ (σ > τ')
- τ' is said to be a generic instance of σ when S maps variables to new variables.

Example:
σ = ∀t_1. t_1 --> t_2

a generic instance of σ is τ'}
Generalization *aka* Closing

\[
\text{Gen}(\text{TE}, \tau) = \forall t_1..t_n. \tau
\]
where \(\{ t_1...t_n \} = \text{FV}(\tau) - \text{FV}(\text{TE}) \)

- *Generalization* introduces polymorphism
- Quantify type variables that are free in \(\tau \) but not *free* in the type environment (TE)
- Captures the notion of *new* type variables of \(\tau \)

Type Inference

- Type inference is typically presented in two different forms:
 - *Type inference rules*: Rules define the type of each expression
 - Needed for showing that the type system is *sound*
 - *Type inference algorithm*: Needed by the compiler writer to deduce the type of each subexpression or to deduce that the expression is ill typed.
- Often it is nontrivial to derive an inference algorithm for a given set of rules. There can be many different algorithms for a set of typing rules.

next lecture ...