Architectural Considerations for a New Generation of Protocols

presented by Xiaowei Yang
Overview

- Two Architectural Principles
 - ILP (Integrated Layer Processing)
 * Layering is a design concept
 * And may not be the most effective modularity for implementation.
 - ALF (Application Level Framing)
 * Get data to applications as soon as possible, in a manner the applications can cope with.
Background

- The paper was written 10 years ago. Back then
 - The fate of ATM and OSI were unclear
 - Authors were trying to figure out how to unite IP network and ATM network
 - We didn’t know how to write networking code efficiently
Structuring Principle of Protocol Design

- OSI’s 7-layer architecture
 - Physical, data-link, network, transport, session, presentation, application

- Internet’s architecture
 - host-to-network, IP, transport, application

- A design choice to decompose complex protocol into functional modules

- Should not constrain efficient implementations
Protocol Functions

- What are protocols for?
 - Transfer application information among machines
- Multiple Data Manipulation Steps
- Moving to/from net
- Error Detection
- Buffering for retransmission
- Encryption
- Moving to/from application address space
- Presentation formatting
Integrated Layer Processing

- **Multiple** data touches are expensive
 - gap between processor/memory speed

- Example: Copy + CheckSum
 - \[
 \frac{1}{\left(\frac{1}{130} + \frac{1}{115}\right)} = \frac{1}{0.00769 + 0.00869} = \frac{1}{0.164} = 61
 \]
 - Combing the two together get 90Mbps

- **Solution**: Reduce multiple data touches.
 - Do it in one loop if possible.
ILP: Today’s View

- Network is usually the bottleneck.
- Application is the bottleneck: presentation conversion (next slide)
- Automatically generating ILP code is hard.
 * Many approaches: compiler support, formal languages.
 * None of them really worked.
- ILP leverages special coding techniques such as hand-coded unrolled loops.
 * Loss of generality.
 * Code is difficult to understand and maintain.
Application Level Framing: Original Motivation

- Presentation conversion is the bottleneck
 - ASN.1 Integer to ASCII: 28Mb/s.
 - Copy: 130Mb/s; Checksum: 115Mb/s

- 97% of the overhead was attributable to the presentation conversion

- Solution
 - Eliminate presentation conversion: ASCII protocols
 - Optimize
Application Level Framing: the Problem

- TCP’s reliable in-order byte-stream interface prohibits the out of order data delivery to application.

- Application is prevented from performing presentation conversion as data arrives.

- Since presentation conversion is the bottleneck, it will fall behind forever.

 → Allow data manipulation to happen in the presence of mis-ordered and lost packets

- Out of order data manipulation improves performance even when presentation conversion is absent.
Application Level Framing: Why

- **General** requirements for out of order processing:
 * “synchronization points” in data streams

- **Example**: Checksums are computed on per packet basis. Packet boundary serves as synchronization points.

- Synchronization points have to make sense to applications.
 * TCP numbers the bytes in the data stream, which has no meaning to applications.
 * Presentation changes the application data format and does not preserve the size.
Application Level Framing: What

- ALF (Application Level Framing)
 - Lower layers deal with data in units the application specifies.
 - Applications are encouraged to deal with data loss and data recovery in their preferred fashion.
 * selective reliability, out of order processing

- ADU (Application Data Unit)
 - the smallest data unit that an application can process out of order
Application Level Framing: What (continued)
Application Level Framing: How

- Receiver needs to understand where to put ADUs and what to do with them
- Sender can compute a name for each ADU: a meta data that tags the ADU
- The name permits the receiver to understand its place in the sequence of ADUs
Example I: Image Transport Protocol (ITP)

- **Problem**
 - Images account for much of today’s Internet traffic
 - Image transport is over HTTP/TCP
 - TCP’s in order delivery results in poor latency in lossy networks

- **Solution**
 - Image data is structured
 - Frame data into macro blocks (ADUs)
 - Deliver and process ADUs out of order
 - Interpolate missing ADUs
Example II: ALF in Reliable Multicasting

- Difficulties in achieving Scalable Reliable Multicasting: ACK implosion

- Scalable Reliable Multicasting (SRM)
 - Senders computes meta-data that summarizes all available data
 - Receivers request the retransmission of any desired data triggered by meta-data using multicast damping
Scalable Data Naming to Express Semantics

- Problem:
 - Traditional reliable protocols number data units sequentially to detect losses
 - Transport-level sequence numbers do not express applications’ reliability semantics
 * \(wb \): sequence number 5000 is associated with page 10
 - Receiver-driven reliability is cumbersome to achieve

- Solution
 - A data naming scheme to expose the structure of application data to transport layer
 - A Receiver is able to express its reliability semantics to the transport layer.
Scalable Naming and Announcement Protocol: Hierarchical Data Naming

- Allow senders to transmit different objects independently
- Allow receivers to easily specify the data it requires
- The meta-data is scalable even when the data set is large
Example: An ADU from \(wb \)

- The 5th drawing operation on page 2 from source 9
Comments on ALF

- Good for interactive applications, where user perceivable performance matters.
- Good for graphical applications, where data are inherently multi-dimensional.
The Paper’s Influence

- Inspired three trends of research
 - A new protocol stack: a debatable issue

* ALF == UDP + application specific protocols?
The Paper’s Influence

- Inspired three trends of research
 - A new protocol stack: a debatable issue
 - Protocol implementation: unsuccessful
 * Micro protocol design
 * Specialized protocol implementation (e.g. TCP for telnet)
 * Lessons: taking into account Moore’s Law for performance optimization. :)
 - ALF based applications and protocols: the most successful branch
 * ITP, wb, reliable multicasting