Query Optimization

Lab 2 due next Thursday.

M pages memory
S and R, with |S| |R| pages respectively; |SI| > |RI|
M > sqrt(|SI|)

External Sort Merge

split SI and IRI into memory sized runs
sort each
merge all runs simultaneously

total I/O 3 |RI| + |SI|
(read, write, read)

“Simple” hash

given hash function h(x), split h(x) values in N ranges
N = ceiling(|RI|/M)

for (i = 1…N)
for r in R
if h® in range i, put in hash table Hr
 o.w. write out
for s in S
if h(s) in range i, lookup in Hr
 o.w. write out

total I/O
N (|RI| + |SI|)

Grace hash:

for each of N partitions, allocate one page per partition
hash r into partitions, flushing pages as they fill
hash s into partitions, flushing pages as they fill
for each partition p
 build a hash table Hr on r tuples in p
 hash s, lookup on Hr

example:
R = 1, 4, 3, 6, 9, 14, 1, 7, 11
S = 2, 3, 7, 12, 9, 8, 4, 15, 6
h(x) = x mod 3

R1 = 3 6 9
R2 = 1 4 1 7
R3 = 14 11
S1 = 3 12 9 15 6
S2 = 7 4
S3 = 2 8
Now, join R1 with S1, R2 with S2, R3 with S3

Note -- need 1 page of memory per partition. Do we have enough memory?

We have \(|R| / M \) partitions

\[M \geq \sqrt{|R|} \]

worst case

\[\frac{|R|}{\sqrt{|R|}} = \sqrt{|R|} \] partitions

Need \(\sqrt{|R|} \) pages of memory b/c we need at least one page per partition as we write out (note that simple hash doesn't have this requirement)

I/O:

read R+S (seq)
write R+S (semi-random)
read R+S (seq)

also \(3(|R|+|S|) \) I/OS

What's hard about this?

When does grace outperform simple?
(When there are many partitions, since we avoid the cost of re-reading tuples from disk in building partitions)

When does simple outperform grace?
(When there are few partitions, since grace re-reads hash tables from disk)

So what does Hybrid do?

\[M = \sqrt{|R|} + E \]

Make first partition of size \(E \), do it on the fly (as in simple)
Do remaining partitions as in grace.

Why does grace/hybrid outperform sort-merge?
CPU Costs!
I/O costs are comparable
690 / 1000 seconds in sort merge are due to the costs of sorting
17.4 in the case of CPU for grace/hybrid!

Will this still be true today?
(Yes)

Selinger

Famous paper. Pat Selinger was one of the early System R researchers; still active today.

Lays the foundation for modern query optimization. Some things are weak but have since been improved upon.

Idea behind query optimization:
(Find query plan of minimum cost)

How to do this?
(Need a way to measure cost of a plan (a cost model))

single table operations

how do i compute the cost of a particular predicate?
compute it's "selectivity" - fraction F of tuples it passes

how does selinger define these? -- based on type of predicate and available statistics

what statistics does system R keep?
- relation cardinalities NCARD
- # pages relation occupies TCARD
- keys in index ICARD
- pages occupied by index NINDX

Estimating selectivity F:

col = val
F = 1/ICARD()
F = 1/10 (where does this come from?)

col > val
high key - value / high key - low key
1/3 o.w.

col1 = col2 (key-foreign key)
1/\text{MAX}(ICARD(col1, col2))
1/10 o.w.

ex: suppose emp has 10000 records, dept as 1000 records
total records is 10000 * 1000, selectivity is 1/10000, so 1000 tuples expected to pass join
note that selectivity is defined relative to size of cross product for joins!

p1 and p2
F1 * F2
then, compute access cost for scanning the relation.
how is this defined?
(in terms of number of pages read)

\[1 - (1-F1) \times (1-F2) \]

equal predicate with unique index: \[1 \text{ [btree lookup]} + 1 \text{ [heapfile lookup]} + W \]

(W is CPU cost per predicate eval in terms of fraction of a time to read a page)

range scan:

clustered index, boolean factors: \[F(\text{preds}) \times (\text{NINDEX} + \text{TCARD}) + W \times (\text{tuples read}) \]

unclustered index, boolean factors: \[F(\text{preds}) \times (\text{NINDEX} + \text{NCARD}) + W \times (\text{tuples read}) \]

unless all pages fit in buffer -- why?

...
seq (segment) scan: \[\text{TCARD} + W \times (\text{NCARD}) \]

Is an index always better than a segment scan? (no)

multi-table operations

how do I compute the cost of a particular join?

algorithms:

\[\text{NL}(A,B,\text{pred}) \]

\[\text{C-outer}(A) + \text{NCARD}(\text{outer}) \times \text{C-inner}(B) \]

Note that inner is always a relation; cost to access depends on access methods for B; e.g.,

w/ index -- 1 + 1 + W

w/out index -- \[\text{TCARD}(B) + W \times \text{NCARD}(B) \]

C-outer is cost of subtree under outer

How to estimate \(\text{# NCARD}(\text{outer}) \)? product of \(F \) factors of children, cardinalities of children

example:

```
A C1
F1
\sigma
F2
B C2
NCARD_a x NCARD_B
```

Merge_Join_x(P,A,B), equality pred

\[\text{C-outer} + \text{C-inner} + \text{sort cost} \]

(Saw cost models for these last time)

At time of paper, didn't believe hashing was a good idea

Overall plan cost is just sum of costs of all access methods and join operators

Then, need a way to enumerate plans
Iterate over plans, pick one of minimum cost

Problem:

Huge number of plans. Example:

suppose I am joining three relations, A, B, C
Can order them as:

(AB)C
A(BC)
(AC)B
A(CB)
(BA)C
B(AC)
(BC)A
B(AC)
(CA)B
C(AB)
(CB)A
C(BA)

Is C(AB) different from (CA)B?
Is (AB)C different from C(AB)?
yes, inner vs. outer

n! strings * # of parenthetizations

how many parenthetizations are there?

ABCD --> (AB)CD A(BC)D AB(CD) 3
XCD AXD ABX * 2

===

6 --> (n-1)!

==> n! * (n-1)!

6 * 2 == 12 for 3 relations

Ok, so what does Selinger do?

Push down selections and projections to leaves
Now left with a bunch of joins to order.

Selinger simplifies using 2 heuristics? What are they?

- only left deep; e.g., ABCD => (((AB)C)D) show
- ignore cross products

e.g., if A and B don't have a join predicate, doing consider joining them

still n! orderings. can we just enumerate all of them?

10! -- 3million
20! -- 2.4 * 10 ^ 18

so how do we get around this?
Estimate cost by dynamic programming:

idea: if I compute join (ABC)DE -- I can find the best way to combine ABC and then consider all the ways to combine that with DE.

I can remember the best way to compute (ABC), and then I don't have to re-evaluate it. Best way to do ABC may be ACB, BCA, etc -- doesn't matter for purposes of this decision.

algorithm: compute optimal way to generate every sub-join of size 1, size 2, ... n (in that order).

R <--- set of relations to join
for \(\delta \) in \{1,...,|R|\):
 for S in \{all length \(\delta \) subsets of R\):
 \(\text{optjoin}(S) = \text{a join (S-a), where a is the single relation that minimizes:} \)
 \(\text{cost(optjoin(S-a))} + \)
 \(\text{min cost to join (S-a) to a} + \)
 \(\text{min. access cost for a} \)

example: ABCD

Only look at NL join for this example

A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)
B = */* * * B
C = */* * * C
D = */* * * D

\{A,B\} = AB or BA
\{A,C\} = AC or CA
\{B,C\} = BC or CB
\{A,D\}
\{B,D\}
\{C,D\}

\{A,B,C\} = remove A - compare A((B,C)) to ((B,C))A
 remove B - compare ((A,C))B to B((A,C))
 remove C - compare C((A,B)) to ((A,B))C

\{A,C,D\}
\{A,B,D\}
\{B,C,D\}

\{A,B,C,D\} = remove A - compare A((B,C,D)) to ((B,C,D))A
 remove B
 remove C
 remove D

Complexity:

Number of subsets of size 1 * work per subset = W+
Number of subsets of size 2 * W +
...
Number of subsets of size n * W+

\(n + n + n ... n \)
1 2 3 n
number of subsets of set of size $n = \text{power set of } n = 2^n$
(string of length n, 0 if element is in, 1 if it is out; clearly, 2^n such strings)

(reduced an $n!$ problem to a 2^n problem)

what's W? (n)

so actual cost is: $2^n * n$

So what's the deal with sort orders? Why do we keep interesting sort orders?

Selinger says: although there may be a 'best' way to compute ABC, there may also be ways that produce interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.

So we need to keep best way to compute ABC for different possible join orders.

so we multiply by "k" -- the number of interesting orders

how are things different in the real world?
- real optimizers consider bushy plans (why?)

```
  A
  D  B
  C  E
```

- selectivity estimation is much more complicated than selinger says and is very important.

how does selinger estimate the size of a join?
- selinger just uses rough heuristics for equality and range predicates.

- what can go wrong?
 consider ABCD
 suppose sel (A join B) = 1
 everything else is .1
 If I don't leave A join B until last, I'm off by a factor of 10

- how can we do a better job?
 (multi-d) histograms, sampling, etc.

example: 1d hist

![Histogram Image](https://opencourseware.mit.edu)
example: 2d hist

Salary > 1000*age
area below line

Image by MIT OpenCourseWare.