1.1 Computing Bind Pose

We are given a skeleton and a skin mesh in a bind pose. Our character has only two bones (red and green) and we are interested in only one mesh vertex, \(p \). See the diagram below.

Compute rigid-transformation matrices \(B_{\text{red}} \) and \(B_{\text{green}} \) that transform mesh vertices from local bone coordinate system to the global coordinate system.
Then compute \(p_{\text{red}} \) and \(p_{\text{green}} \), the bone space coordinates of vertex \(p \) relative to the red and green bones, either geometrically or by inverting \(B_{\text{red}} \) and \(B_{\text{green}} \).

1.2 Bone Transformations

We have transformed each bone of this character according to the diagram below.

Compute matrices \(T_{\text{red}} \) and \(T_{\text{green}} \) that transform mesh vertices from local bone coordinate system to the global coordinate system.
1.3 Computing Vertex Positions

Using previously computed \(\mathbf{p}_{\text{red}} \) and \(\mathbf{p}_{\text{green}} \) and the new bone matrices \(\mathbf{T}_{\text{red}} \) and \(\mathbf{T}_{\text{green}} \), determine the transformed positions of vertex \(\mathbf{p} \) in the global coordinate system, both for the red and green bone.

\[
\begin{bmatrix}
\end{bmatrix}
\]

Given that the weights for the red and green bone are 0.5, compute the final transformed vertex position in the global coordinate system.

\[
\begin{bmatrix}
\end{bmatrix}
\]
2 Shading

Suppose we have a sphere centered at the origin, \(x^2 + y^2 + z^2 = r^2 \). There is a light source at \((a,b,c)\). Generate a formula for finding the color at any point \((x,y,z)\) on the surface of the sphere, assuming that there is diffuse reflection. Define any additional terms you introduce.

3 Ray Tracing

3.1 Refraction

Recall that the formula for the outgoing angle of a refracted ray is:

\[
T = \left[\eta_r (N \cdot I) - \sqrt{1 - \eta_r (1 - (N \cdot I)^2)} \right] N - \eta_r I
\]

What is the name of the physical phenomenon that causes the term under the square root to be negative?

How should we deal with the transmitted ray in such a case?
3.2 Kd-tree

Below is the representation of a given 2D Kd-tree with the leaves indicated by upper-case letters. We have drawn some leaf geometry in blue for motivation, but you do not need to consider it, albeit to notice that the particular ray r does not have any intersection with the scene.

\[
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{E} \\
\text{F} \\
\text{G} \\
\text{H} \\
\]

Draw the corresponding tree structure.

We now consider the traversal of this kd-tree for the ray r, as it would happen for ray-tracing acceleration. For warm up, draw the four intersections with the sides of the bounding box of the tree that occur during the initialization of the traversal.

We now want you to show the order in which ray-plane intersections are computed for the efficient hierarchical traversal of the tree. Draw a cross at each intersection point and write its order as a number next to it. NB: we want the order in which intersections are calculated, not the order along the ray. Make sure you use a smart traversal that only visits relevant nodes and that the order can enable early termination if appropriate.
3.3 Ray slab intersection

We seek to compute the intersection between a ray and a convex object defined as the intersection of a set of slabs. Slabs are the space between two parallel planes (see figure). A slab with index i is defined by a normal N_i and two real numbers d_{i1} and d_{i2}. The axis-aligned bounding boxes we studied in class are a special type of such objects where the three slabs have axis-aligned normals.

We want to adapt the fast ray-box intersection algorithm to handle general slabs. We parameterize our ray as $P(t) = O + tD$ where O is the origin and D the direction. You can assume that the ray is going in the positive direction (i.e. t_1 is always smaller than t_2) and you should not worry about the ray being parallel to a plane or starting inside the slab.

First, we consider a single slab with index i. Write the equation for t_1 and t_2, the intersection parameters for the first and second plane delimiting this slab.
We now turn to the intersection of the ray and the CSG intersection of N slabs. We initialize t_{start} and t_{end} with the values for t_1 and t_2 given by the first pair of planes. Write pseudocode to update t_{start} and t_{end} with the values t'_1 and t'_2 for a new pair of planes.

Finally, after they have been updated to take into account all slabs, give a criterion on t_{start} and t_{end} that determines if the intersection between the ray and the volume is non-empty. Do not worry about whether the slab is in front or behind the origin.
4 Rasterization

We want to implement two-scale rasterization where rectangular groups of pixels are quickly declared fully inside or fully outside a triangle. Assume you are given the three edge equations so that a 2D point P inside the triangle respects $P \cdot N_i - d_i > 0$ for $i = 0..2$. A rectangular region is described by its four corners P_j for $j = 0..3$.

What is the condition for the full rectangle to be entirely inside the triangle? [/4]

Things are more tricky for the test to be fully outside. A naïve solution would be to say that all four corners fail the edge tests. Find a counter example. [/4]
5 Graphics hardware

List one form of task vs. data parallelism in graphics hardware.

Example of task parallelism:

Example of data parallelism:

Attribute the following properties to either graphics hardware or CPU (we recommend against using the acronym GPU because we might have a hard time distinguishing your Gs and Cs :-{

- optimized for latency

- latency hiding

- extremely long pipeline (1000 stages)

Would the following algorithm be implemented in a vertex or pixel shader?

SSD skinning

Phong shading

Blend shapes

Shadow map query