6.851 Advanced Data Structures (Spring’12)
Prof. Erik Demaine

Problem 1 Due: Thursday, Feb. 23

Be sure to read the instructions on the assignments section of the class web page.

Creationist successor. Given an ordered universe U of keys, develop and analyze a fully retroactive data structure that maintains $S \subseteq U$ and supports the following operations:

- **insert(k)**: Insert $k \in U$ into S
- **delete(k)**: Remove $k \in U$ from S
- **successor(k)**: Return $\min\{k' \in S \mid k' \geq k\}$

under the constraint that all insert operations must occur at time $-\infty$. All operations should run in time $O(\log m)$, where m is the total number of updates performed in the structure (retroactive or not). Observe that such a structure is sufficient to answer the “rightward ray shot” queries needed for the nonoblivious retroactive priority queue.

A simple reference to the logarithmic time data structure for general retroactive successor is not a valid solution to this problem. This is a special case of that problem, and a much simpler solution is desired.