Be sure to read the instructions on the assignments section of the class web page. Remember to keep your solutions to one page!

Orthogonal line segment intersection. Given a set of \(N \) horizontal and vertical line segments, develop and analyze a cache-oblivious algorithm to find the number of vertical segments intersecting each horizontal segment in \(O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right) \) memory transfers. You may assume that the endpoints of any two different line segments do not have the same \(x \) or \(y \) value.

Line segment visibility from a point. Given a set of \(N \) line segments and a point \(p \), we would like to find the clockwise list of partial line segments visible from \(p \). A (partial) line segment is visible from \(p \) if, for any point along the segment, a line can be drawn from that point to \(p \) without intersecting any other line segment. If a line segment is only partially visible from \(p \), then only the segment that is visible should appear in the output list. A single line segment may contain many partial segments in the output list. Develop and analyze a cache-oblivious algorithm to accomplish this in \(O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} + \frac{K}{B}\right) \) memory transfers, where \(K \) is the size of the output. You may assume that no two points in the input lie along the same line to \(p \), and that no two line segments intersect.