Today: Fusion trees
- sketch & why it's enough
- approximate sketch via multiplication
- parallel comparison
- most significant set bit 1 year after ‘cold fusion’ debacle

Fusion trees: [Fredman & Willard - STOC 1990, JCSS 1993]
- store $n \cdot w$-bit integers - here, statically
- $O(\log w n)$ time for predecessor/successor
- $O(n)$ space
- word RAM \Rightarrow predecessor $\leq \min \{ \log w n, \log w^3 \}$

- AC^0 RAM version [Andersson, Miltersen, Thorup - TCS 1999] \Rightarrow ops. are constant-depth (unbounded fan) circuits \Rightarrow no multiplication
- dynamic version via exponential trees: $O(\log w n + \log \log w n)$ deterministic updates [Andersson & Thorup - JACM 2007]
- dynamic version via hashing: [Raman - ESA 1996] $O(\log w n)$ expected updates

- OPEN: $O(\log w n)$ w.h.p. updates?
Idea: B-tree with branching factor $\Theta(w^{1/5})$

\Rightarrow height $= \Theta(\log_w n)$

$= \Theta(\log n / \log w)$

- search must visit a node in $O(1)$ time
- not enough time to read the node ($w^{1/5}$ w-bit words) to figure out which child

Fusion-tree node:

- store $k = O(w^{1/5})$ keys $x_0 < x_1 < \cdots < x_{k-1}$
- $O(1)$ time for predecessor/successor
- $kO(1)$ preprocessing
Distinguishing $k = O(w^{1/5})$ keys:
- View keys $x_0, x_1, \ldots, x_{k-1}$ as binary strings (0/1)
 i.e. root-to-leaf paths in
 height-w binary tree (left/right)
- \Rightarrow $k-1$ branching nodes
- $\leq k-1$ levels
 containing branching nodes
 i.e. bits where $x_0, x_1, \ldots, x_{k-1}$ first differ
 (first distinct prefix)
- Call these important bits $b_0 < b_1 < \cdots < b_{r-1}$,
 $r < k = O(w^{1/5})$

(perfect) sketch(x) = extract bits $b_0, b_1, \ldots, b_{r-1}$ from x
 i.e. r-bit vector whose ith bit = b_ith bit of word x
 \Rightarrow sketch(x_0)$<$$\cdots <$ sketch(x_{k-1})

& can pack (fuse) into one word: $k \cdot r = O(w^{2/5})$ bits
 - computable in $O(1)$ time as AC0 operation
 [Andersson, Miltersen, Thorup - TCS 1999]
 - We’ll see a cool way to compute approximate
 sketch using multiplication & standard ops.

Node search: for query q, compare sketch(q)
 in parallel to sketch(x_0), ..., sketch(x_{k-1})
 - again AC0 operation on $O(1)$ words
 & we’ll see a nice way with standard ops.
 \Rightarrow find where sketch(q) fits among sketch(x_0)$<$$\cdots <$ sketch(x_{k-1})
 - Want where q fits among $x_0 < \cdots < x_{k-1}$
Desketchifying:

- suppose \(\text{sketch}(x_i) \leq \text{sketch}(q) < \text{sketch}(x_{i+1}) \)
- longest common prefix = lowest common ancestor between \(q \) & (either \(x_i \) or \(x_{i+1} \))
- nonsketch
- node \(y \) where \(q \) fell off paths to \(x_i \)'s
- if \(y \ell \) 1st bit of \(q \) is 1:
 - nearest \(x_i \) is in \(y0 \) subtree
 - nearest extreme in that subtree is \(e = y011 \ldots 1 \)
- else: \(e = y100 \ldots 0 \)

- predecessor & successor of \(q \) among \(x_i \)'s
- predecessor & successor of \(\text{sketch}(e) \) among \(\text{sketch}(x_i) \)'s

(in terms of \(\text{rank} \ i \sim \text{can translate to} \ x_i \)
Approximate sketch(\(x\)): on word RAM
- don't need sketch to pack \(b_i\) bits consecutively
- can spread out in predictable pattern of length \(O(w^{4/5})\)
 \[\text{independent of } x \]

Idea: mask important bits: \(x' = x \text{ AND } \sum_{i=0}^{r-1} 2^{bi} \)
& multiply \(x'.m = (\sum_{i=0}^{r-1} x_{bi} 2^{bi}) (\sum_{j=0}^{r-1} 2^{mj}) \]
\[= \sum_{i=0}^{r-1} \sum_{j=0}^{r-1} x_{bi} 2^{bi+mj} \]

Claim: for any \(b_0, b_1, \ldots, b_{r-1}\), can choose \(m_0, m_1, \ldots, m_{r-1}\)
such that \(\oplus b_i + m_j \) are all distinct (no collision)
\(b_0 + m_0 < \cdots < b_{r-1} + m_{r-1}\) (preserve order)
\((b_{r-1} + m_{r-1}) - (b_0 + m_0) = O(r^4) = O(w^{4/5}) \) (small)
\(\Rightarrow \text{approx-sketch}(x) = \left[(x.m) \text{ AND } \sum_{i=0}^{r-1} 2^{bi+m}_i \right] >> (b_0 + m_0) \)

Proof: 1) choose \(m'_0, m'_1, \ldots, m'_{r-1} < r^3 \) such that
\(b_i + m'_j \) are all distinct \(\mod r^3 \) (strong @)
- pick \(m'_0, m'_1, \ldots, m'_{t-1}\) by induction
- \(m'_t\) must avoid \(b_j - b_k \text{ and } i, j, k \)
\(\Rightarrow \text{choice for } m'_t \text{ exists} \)
- to make nonnegative

2) let \(m_i = m'_i + (w - b_i + ir^3 \text{ rounded down to mult. of } r^3) \)
\(\equiv m'_i \text{ (mod } r^3) \)
\(\Rightarrow m_i + b_i \text{ in } r^3 \text{ interval after } (\lfloor \frac{w}{r^3} \rfloor + i) \cdot r^3 \)
\(\Rightarrow m_0 + b_0 < \cdots < m_{r-1} + b_{r-1} \)
\(\approx w \approx w + r^4 \Rightarrow \text{diff. } = O(r^4) \)
\[\Box \]
Parallel comparison:
- sketch(node) = \(1 \) sketch(x_0) \(\cdots \) 1 sketch(x_{k-1})
- sketch(q)^k = 0 sketch(q) \(\cdots \) 0 sketch(q)
- difference = \(\frac{1}{q} \) 00000 \(\cdots \) \(\frac{1}{q} \) 00001
- And with \(\frac{1}{q} \) 00000 \(\cdots \) \(\frac{1}{q} \) 00000
 \[
 \begin{align*}
 1 & \text{ if sketch(q) } \leq \text{ sketch(x_i)} \\
 0 & \text{ if sketch(q) } > \text{ sketch(x_i)}
 \end{align*}
 \]
 \(\Rightarrow \) these bits look like 00000111
 where sketch(q) fits \(\uparrow \)
 need index of most sig. 1 bit
- multiply with 0 00001 \(\cdots \) 0 00001
 \(\Rightarrow \) #’s \(\frac{1}{q} \)’s \(\text{desired} \)
 \(\text{desired} \) \text{ to right}
- AND with 11111 & shift right to get # 1’s
 = index of \(\emptyset \rightarrow 1 \) transition
 = k-rank in sketch world
- special case of:

Index of most significant 1 bit: 00010110 \(\Rightarrow \) 4
- \(AC^0 \) operation [Andersson, Miltersen, Thorup 1999]
- instruction on most modern CPUs
 (see Linux kernel: include/asm-*/*bitops.h; GCC: --builtin-clz; VC++: _BitScanReverse)
- needed during desketchifying (q XOR x_{i+1})
Word RAM solution: [Fredman & Willard 1993]
- Split word into \sqrt{W} clusters of \sqrt{W} bits each:

 \[x = 0101 \ 0000 \ 1000 \ 1101 \]

- Similar to van Emde Boas, but no recursion
- Identify first nonempty cluster, then first 1 within

1. Identify nonempty clusters
 - AND x with $F = 1000 \ 1000 \ 1000 \ 1000$
 \[\Rightarrow 0000 \ 0000 \ 1000 \ 1000 \]
 = which clusters have first bit set
 - XOR with x \[\Rightarrow 0101 \ 0000 \ 0000 \ 0101 \]
 = remaining bits
 - Subtract F - this:
 \[0*** \ 1000 \ 1000 \ 0*** \]
 borrow \(\Rightarrow\) nonempty
 \[\Rightarrow\] no borrow \(\Rightarrow\) subtract \(\varnothing\)
 - AND with F \(\Rightarrow 0000 \ 1000 \ 1000 \ 0000 \)
 - XOR with F \(\Rightarrow 1000 \ 0000 \ 0000 \ 1000 \)
 nonempty \(\Rightarrow\) empty
 - OR with which clusters have first bit set
 \[\Rightarrow y = 1000 \ 0000 \ 1000 \ 1000 \]
 = which clusters are nonempty
perfect sketch of y
- $b_i = \sqrt{w} - 1 + i \sqrt{w}$
- use $m_j = w - (\sqrt{w} - 1) - j \sqrt{w} + j$
$\Rightarrow b_i + m_j = w + (i-j)\sqrt{w} + j$ are unique for $0 \leq i, j < \sqrt{w}$
$\& b_i + m_i = w + i$
\Rightarrow bits $w, w+1, \ldots, w+\sqrt{w}-1$ of $y \cdot m$
(shifted right w) form perfect sketch(y)

find first 1 bit in sketch(y)
= first nonempty cluster c
- use parallel comparison to find rank among:
 \[
 \begin{bmatrix}
 0001 \\
 0010 \\
 0100 \\
 1000 \\
 \end{bmatrix}
 \] \sqrt{w} powers of 2
- fits: $\sqrt{w} \cdot (\sqrt{w}+1) < 2w$ bits

find first 1 bit d in identified cluster c
- shift right $c \cdot \sqrt{w}$ & AND with 1111
to obtain cluster
- use parallel comparison as in 3

answer = $c \sqrt{w} + d$