TODAY: Memory Hierarchies II (of 3)
- ordered file maintenance (for B-tree in L7)
- list labeling (for persistence in L1)
- cache-oblivious priority queue

Ordered file maintenance: [Itai, Konheim, Roteh-JACM 1981; Bender, Demaine, Farach-Colton-Focs 2000]

Goal: Store N elements in specified order in an array of size $O(N)$ with gaps of size $O(1)$

\Rightarrow scanning K consecutive elts. costs $O(\frac{K}{B})$ mem. trans.

Subject to elt. deletion & insertion between 2 elts.

by re-arranging elts. in array interval of $O(\log^2 N)$ amortized elts., via $O(1)$ interleaved scans

\Rightarrow costs $O(\frac{\log^2 N}{B})$ amortized memory transfers

Idea: upon updating element, ensure locally not too dense/sparse by redistributing elements in surrounding interval

- intervals defined by nodes in complete binary tree on $O(\log n)$-size chunks of array:
Update:
① update leaf by rewriting $\Theta(\log n)$-size chunk
② walk up tree until reach ancestor whose

density(node) = \frac{\# \text{elts. stored below node}}{\# \text{array slots in interval}}
is within threshold at its depth d:
- $\text{density} \geq \frac{1}{2} - \frac{1}{4} \cdot \frac{d}{h} \in \left[\frac{1}{4}, \frac{1}{2}\right]$ (not too sparse)
- $\text{density} \leq \frac{3}{4} + \frac{1}{4} \cdot \frac{d}{h} \in \left[\frac{3}{4}, 1\right]$ (not too dense)
③ evenly rebalance elements below node

Analysis:
- thresholds get tighter as we go up
 \Rightarrow rebalancing node puts children FAR within threshold:
 $\mid \text{density} - \text{threshold} \mid \approx \frac{1}{4} \cdot \frac{1}{h} = O\left(\frac{1}{\log N}\right)$
- this node won't be rebalanced again until
 ≥ 1 child out of threshold
 $\Rightarrow \Omega\left(\frac{\text{capacity}}{\log N}\right)$ updates to charge to
 $\Omega(1)$ because leaf = chunk has size $\Theta(\log N)$
$\Rightarrow \Omega(\log N)$ amortized rebuild cost
 to update element below a node
- each leaf is below $h = \Theta(\log N)$ ancestors
 $\Rightarrow \Theta(\log^2 N)$ amortized cost per update

Conjecture: $\Omega(\log^2 N)$ necessary
List labeling: closely related problem
maintain explicit integer label in each node in a
linked list, subject to insert/delete node here,
such that labels are monotone at all times
(label = index in array)

<table>
<thead>
<tr>
<th>label space</th>
<th>best known time/update</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1+ε)n \ldots n \lg n</td>
<td>(O(\lg^2 n)) - ordered file maintenance</td>
</tr>
<tr>
<td>(n^{1+\epsilon} \ldots n)</td>
<td>(\Theta(\lg n)) - (\Omega) via modified threshold: density (\leq \frac{1}{\alpha^2}, 1 \leq \alpha \leq 2) [Dietz, Seiferes, Zhang - SIDMA 2008]</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(\Theta(1)) - trivial</td>
</tr>
</tbody>
</table>

List order maintenance: easier problem, from \(L_1\)
maintain linked list subject to insert/delete node here
& order query: is node \(x\) before node \(y\)?
- \(O(1)\) solution via indirection: [Dietz & Sleator - STOC 1987;
Bender, Cole, Demaine, Farach-Colton, Zito - ESA 2002]

\[
\begin{align*}
\Theta\left(\frac{n}{\lg n}\right) & \quad \left\{ \begin{array}{l}
\Theta(\lg n) \text{ solution using label space } n \Theta(1) \\
\Theta(\lg n) \Theta(\lg n) \ldots \Theta(\lg n) & \quad \left\{ \begin{array}{l}
\Theta(1) \text{ trivial } O(1) \text{ solution using exponential label space}
\end{array} \right.
\end{array} \right.
\end{align*}
\]

- implicit node label = (top label, bottom label), \(O(\lg n)\) bits
- can compare two labels in \(O(1)\) time
- top updates change many implicit labels at once
- bottom chunks slow top updates by \(\Theta(\lg n)\) factor
- \(O(1)\) amortized cost
- worst-case bounds possible [same refs.]
Cache-oblivious priority queue: (as in Arge et al. 2007)
- \(\lg \lg n \) levels of size \(N, N^{3/4}, N^{1/2}, \ldots \), \(c=0(1) \)
- level \(X^{3/2} \) has 1 up buffer of size \(X^{3/2} \)
 & \(\leq X^{1/2} \) down buffers each of size \(\Theta(X) \)
 where all but first is const. frac. full

Layout: store levels in order, small to large

Invariants:
- down buffers ordered in a level (but unsorted)
- down buffers \(@X^{3/2} \) < down buffers \(@X^{9/4} \)
- down buffers < up buffer in same level
Find-min: smallest element in smallest down buffer

Delete-min: delete from down buffer; if empty, pull

Insert:
1. append to bottom up buffer
2. swap into bottom down buffers if necessary
3. if up buffer overflows: push

Push X elements into level $X^{3/2}$
- sort elements
- distribute among down & up buffers:
 - scan elements, visiting down buffer in order
 - when down buffer overflows, split in half & link
 - when #down buffers overflows, move last to up buffer
 - when up buffer overflows, push it up to $X^{9/4}$

Pull X smallest elts. from level $X^{3/2}$ (& above)
1. sort first two down buffers & extract leading elts.
2. if $<X$: pull $X^{3/2}$ smallest elts. from $X^{9/4}$ (& above)
 sort these elements & up buffer
 refill up buffer to previous size
 with largest elements
 extract needed smallest elts. till X total
 split rest up into down buffers
Analysis: push/pull at level $X^{3/2}$ sans recursion costs $O\left(\frac{X}{B} \log_{\text{mem}} \frac{X}{B}\right)$ memory transfers

- assume all levels of size $\leq M$ stay in cache
- tall cache assumption: $M \geq B^2$ (say)
- push at level $X^{3/2} \geq B^2 \Rightarrow X \geq B^{4/3} \Rightarrow \frac{X}{B} > 1$
 - sort costs $O\left(\frac{X}{B} \log_{\text{mem}} \frac{X}{B}\right)$ memory transfers
 - distribute costs $O\left(X^{1/2} + \frac{X}{B}\right)$ mem. transf.

 startup per down buf. \(\xrightarrow{\text{\tiny scan}}\)

- if $X \geq B^2$ then cost $= O\left(\frac{X}{B}\right)$

- else: only one such level: $B^{4/3} \leq X \leq B^2$
 can keep 1 block per down buf. in cache:
 $X \leq B^2 \Rightarrow X^{1/2} \leq B \leq \frac{M}{B}$ by tall cache
 so just pay $O\left(\frac{X}{B}\right)$ at this level too

- pull at level $X^{3/2} > B^2$:
 - sort costs $O\left(\frac{X}{\log_{\text{mem}} B} \frac{X}{B}\right)$ memory transfers
 - another sort of $X^{3/2}$ els. only when recursing \(\Rightarrow\) charge to recursive pull

Total: each element goes up & then down
(roughly—real proof harder)
& costs $O\left(\frac{1}{B} \log_{\text{mem}} \frac{X}{B}\right)$ per push & pull @ X
\(\Rightarrow O\left(\frac{1}{B} \log_{\text{mem}} \frac{X}{B}\right)\) amortized cost per element

exp. geometric \(\xrightarrow{\text{\tiny \# geometric}}\)

$= O\left(\frac{1}{B} \log_{\text{mem}} \frac{M}{B}\right)$.