Problem Set 4, Part a

Due: Thursday, November 5, 2009

Reading:
Chapter 18, Lamport’s “Time, Clocks,...” paper, Mattern paper, Chapter 19.

Reading for next week:
Chapter 9 (skim), Sections 10.1-10.8 in detail; 10.9 (just skim).

Problems:

1. (Based on Exercise 18.4) Here we consider four notions of “illogical time” for asynchronous send/receive network systems. Each of the four notions of illogical time results from dropping exactly one of the four properties required for logical time. For each of the four notions,
 (a) Describe an algorithm transformation that imposes that kind of illogical time on executions of a given asynchronous network algorithm A. Try to see if you can come up with algorithms that are more efficient/simple than LamportTime.
 (b) Discuss possible applications.

2. Exercise 18.10. (“Illogical time” here refers back to Exercise 18.4.)

3. The Mattern paper describes a distributed algorithm that associates “weak logical times” with events of an underlying algorithm A, by maintaining and sending around vector timestamps.
 Recall the following definitions from class: A “point” for process i in an execution is a position between two consecutive events of process i in the execution, and is specified by a natural number representing the number of previous events at process i. A “cut” in an execution is a vector of points, one for each process. For cuts \(C, C' \), we say \(C \leq C' \) if, for each i, \(C(i) \leq C'(i) \). We say \(C < C' \) if \(C \leq C' \) and \(C(i) < C'(i) \) for at least one i.
 Now fix a cut \(C \), and let \(V_i \) be the timestamp vector of process i at point \(C(i) \). Define a new cut \(V \) such that \(V(i) = \max(V_1(i), \ldots, V_n(i)) \) for each i. We then say that cut \(C \) is “consistent” iff \(\forall i : V(i) = V_i(i) \).
 (a) Describe how to use Mattern’s algorithm to solve the “maximal consistent cut” problem, defined as follows:
 After algorithm A has been executing for a while, each process receives the same (not necessarily consistent) cut \(C \) of the current execution of algorithm A as input. Each process i is required to return its own entry \(M(i) \) in a maximal consistent cut \(M \leq C \) of the execution of A. “Maximal” here means that there should not be another consistent cut \(M' \) such that \(M < M' \leq C \).
 (b) Think of an application for maximal consistent cuts.
