6.852: Distributed Algorithms
Fall, 2009

Class 2
Today’s plan

• Leader election in a synchronous ring:
 – Lower bound for comparison-based algorithms.
• Basic computation in general synchronous networks:
 – Leader election
 – Breadth-first search
 – Broadcast and convergecast
• Reading: Sections 3.6, 4.1-4-2
• Next time:
 – Shortest paths
 – Minimum spanning tree
 – Maximal independent set
 – Reading: Sections 4.3-4.5
Last time

- Model for synchronous networks
- Leader election problem, in simple ring networks
- Two algorithms:
 - [LeLann], [Chang, Roberts]
 - Pass UID tokens one way, elect max
 - Proofs, using invariants
 - Time complexity: n (or $2n$ for halting, unknown size)
 - Communication (message) complexity: $O(n^2)$
 - [Hirshberg, Sinclair]
 - Send UID tokens to successively-doubled distances, in both directions.
 - Message complexity: $O(n \log n)$
 - Time complexity: $O(n)$ (dominated by last phase)
Last time

• Q: Can the message complexity be lowered still more?

• Non-comparison-based algorithms
 – Wait quietly until it’s your “turn”, determined by UID.
 – Message complexity: $O(n)$
 – Time complexity: $O(u_{\text{min}} n)$, or $O(n 2^{u_{\text{min}}})$ if n is unknown
Lower bounds for leader election

Q: Can we get lower time complexity?

Easy n/2 lower bound (informal):
- Suppose an algorithm always elects a leader in time < n/2.
- Consider two separate rings of size n (n odd), R_1 and R_2.
- Algorithm elects processes i_1 and i_2, each in time < n/2.

Now cut R_1 and R_2 at points furthest from the leaders, paste them together to form a new ring R of size 2n.
- Then in R, both i_1 and i_2 get elected, because the time it takes for them to get elected is insufficient for information about the pasting to propagate from the pasting points to i_1 and i_2.
Lower bounds for leader election

- Q: Can we get lower message complexity?
- More difficult $\Omega(n \log n)$ lower bound.
- Assumptions
 - Comparison-based algorithm
 - Unique start state (except for UID), deterministic.
Comparison-based algorithms

- All decisions determined only by relative order of UIDs:
 - Identical start states, except for UID.
 - Manipulate UIDs only by copying, sending, receiving, and comparing them (<, =, >).
 - Can use results of comparisons to decide what to do:
 - State transition
 - What (if anything) to send to neighbors
 - Whether to elect self leader
Lower bound proof: Overview

- For any n, there is a ring R_n of size n such that in R_n, any leader election algorithm has:
 - $\Omega(n)$ “active” rounds (in which messages are sent).
 - $\Omega(n/i)$ msgs sent in active round i (for $i > \sqrt{n}$).
 - Thus, $\Omega(n \log n)$ msgs total.

- Choose ring R_n with a great deal of symmetry in ordering pattern of UIDs.
 - For $n =$ power of 2: Bit-reversal rings.
 - For general n: c-symmetric rings.

- **Key lemma:** Processes whose neighborhoods “look the same” act the same, until information from outside their neighborhoods reaches them.
 - Need many active rounds to break symmetry.
Lower bound proof: Definitions

- A round is **active** if some (non-null) message is sent in the round.
- **k-neighborhood** of a process: The 2k+1 processes within distance k.

- \((u_1, u_2,\ldots, u_k) \& (v_1, v_2,\ldots, v_k)\) are **order-equivalent** provided that \(u_i \leq u_j\) iff \(v_i \leq v_j\) for all \(i,j\).
 - Implies same \(<, =, >\) relationships for all corresponding pairs.
 - Example: \((1 3 6 5 2 7 9)\) vs. \((2 7 9 8 4 10 11)\)

- Two process states \(s\) and \(t\) **correspond** with respect to \((u_1, u_2,\ldots, u_k) \& (v_1, v_2,\ldots, v_k)\) if they are identical except that occurrences of \(u_i\) in \(s\) are replaced by \(v_i\) in \(t\) for all \(i\).
 - Analogous definition for **corresponding messages**.
Lower bound proof: Key Lemma

• **Lemma:** Suppose A is a comparison-based algorithm on a synchronous ring network. Suppose i and j are processes whose sequences of UIDs in their k-neighborhoods are order-equivalent.
Then at any point after $\leq k$ active rounds, the states of i and j correspond with respect to their k-neighborhoods' UID sequences.
• That is, processes with order-equivalent k-neighborhoods are indistinguishable until after “enough” active rounds.
• Enough: Information has had a chance to reach the processes from outside the k-neighborhoods.
• **Example:** 5 and 8 have order-equivalent 3-neighborhoods, so must remain in corresponding states through 3 active rounds.
Lower bound proof: Key lemma

- **Lemma:** Suppose A is a comparison-based algorithm on a synchronous ring network. Suppose i and j are processes whose sequences of UIDs in their k-neighborhoods are order-equivalent. Then at any point after \(\leq k \) active rounds, the states of i and j correspond with respect to their k-neighborhoods' UID sequences.

- **Proof:**
 - Induction on \(r = \) number of completed rounds.
 - Base: \(r = 0 \).
 - Start states of i and j are identical except for UIDs.
 - Correspond with respect to k-neighborhoods for every \(k \geq 0 \).
 - Inductive step: Assume for \(r-1 \), show for \(r \).
Key lemma

- **Lemma:** Suppose i and j have order-equivalent k-neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states, with respect to their k-neighborhoods.

- **Proof, inductive step:**
 - Assume true after round $r-1$, for all i,j,k.
 - Prove true after round r, for all i,j,k.
 - Fix i,j,k, where i and j have order-equivalent k-neighborhoods.
 - Assume $i \neq j$ (trivial otherwise).
 - Assume at most k of first r rounds are active.
 - We must show that, after r rounds, i and j are in corresponding states with respect to their k-neighborhoods.
 - By inductive hypothesis, after $r-1$ rounds, i and j are in corresponding states with respect to their k-neighborhoods.
 - If neither i nor j receives a non-null message at round r, they make corresponding transitions, to corresponding states (with respect to their k-neighborhoods).
 - So assume at least one of i,j receives a message at round r.
Key lemma

- **Lemma**: Suppose i and j have order-equivalent k-neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states, with respect to their k-neighborhoods.

- **Inductive step, cont’d:**
 - So assume at least one of i,j receives a message at round r.
 - Then round r is **active**, and the first $r-1$ rounds include at most $k-1$ active rounds.
 - $(k-1)$-nbhds of $i-1$ and $j-1$ are order-equivalent, since they are included within the k-neighborhoods of i and j.
 - By inductive hypothesis, after $r-1$ rounds:
 - $i-1$ and $j-1$ are in corresponding states wrt their $(k-1)$-neighborhoods, and thus wrt the k-neighborhoods of i and j.
 - Similarly for $i+1$ and $j+1$.
 - Thus, messages from $i-1$ to i and from $j-1$ to j correspond.
 - Similarly for msgs from $i+1$ to i and from $j+1$ to j.
 - So i and j are in corresponding states and receive corresponding messages, so make corresponding transitions and end up in corresponding states.
Lower bound proof

- So, we have shown that many active rounds are needed to break symmetry, if there are large order-equivalent neighborhoods.

- It remains to show:
 - There exist rings with many, and large, order-equivalent neighborhoods.
 - This causes large communication complexity.

- First, see how order-equivalent neighborhoods cause large communication complexity…
Corollary 1: Suppose A is a comparison-based leader-election algorithm on a synchronous ring network, and k is an integer such that for any process i, there is a distinct process j such that i and j have order-equivalent k-neighborhoods. Then A has more than k active rounds.

Proof: By contradiction.

- Suppose A elects i in at most k active rounds.
- By assumption, there is a distinct process j with an order-equivalent k-neighborhood.
- By Key Lemma, i and j are in corresponding states, so j is also elected—a contradiction.
Corollary 2: Suppose A is a comparison-based algorithm on a synchronous ring network, and k and m are integers such that the k-neighborhood of any process is order-equivalent to that of at least m-1 other processes. Then at least m messages are sent in A's k^{th} active round.

Proof:
- By definition, some process sends a message in the k^{th} active round.
- By assumption, at least m-1 other processes have order-equivalent k-neighborhoods.
- By the Key Lemma, immediately before this round, all these processes are in corresponding states. Thus, they all send messages in this round, so at least m messages are sent.
Highly symmetric rings

- That’s how order-equivalent neighborhoods yield high communication complexity.
- Now, show existence of rings with many, large order-equivalent neighborhoods.
- For powers of 2: Bit-reversal rings
 - UID is bit-reversed process number.
 - Example:
 - For every segment of length $n/2^b$, there are (at least) 2^b order-equivalent segments (including original segment).
 - So for every process i, there are at least $n/4k$ processes (including i) with order-equivalent k-neighborhoods, for $k < n/4$.
 - More than $n/8$ active rounds.
 - Number of messages $\geq n/4 + n/8 + n/12 + ... + 2 = \Omega(n \log n)$
C-symmetric rings

- **c-symmetric ring**: For every l such that $\sqrt{n} < l < n$, and every sequence S of length l in the ring, there are at least $\left\lfloor \frac{cn}{l} \right\rfloor$ order-equivalent occurrences.

- **[Frederickson-Lynch]** There exists c such that for every positive integer n, there is a c-symmetric ring of size n.

- Given c-symmetric ring, argue similarly to before.
General Synchronous Networks
General synchronous networks

- Not just rings, but arbitrary digraphs.
- Basic tasks, such as broadcasting messages, collecting responses, setting up communication structures.
- Basic algorithms.
- No lower bounds.
- Algorithms are simplified versions of algorithms that work in asynchronous networks. We’ll revisit them in asynchronous setting.
General synchronous network assumptions

- Digraph G = (V,E):
 - V = set of processes
 - E = set of communication channels
 - distance(i,j) = shortest distance from i to j
 - diam = max distance(i,j) for all i,j
 - Assume: Strongly connected (diam is finite), UIDs

- Set M of messages
- Each process has states, start, msgs, trans, as before.
- Processes communicate only over digraph edges.
- Generally don’t know the entire network, just local neighborhood.
- Local names for neighbors.
 - No particular order for neighbors, in general.
 - But (technicality) if incoming and outgoing edges connect to same neighbor, the names are the same (so the node “knows” this).
Leader election in general synchronous networks

• **Assume:**
 – Use UIDs with comparisons only.
 – No constraints on which UIDs appear, or where they appear in the graph.
 – Processes know (upper bound on) graph diameter.

• **Required:** Everyone should eventually set status $\in \{\text{leader, non-leader}\}$, exactly one leader.

• Show basic **flooding algorithm**, sketch proof using invariants, show **optimized version**, sketch proof by relating it to the basic algorithm.

• **Basic flooding algorithm:**
 – Every round: Send max UID seen to all neighbors.
 – Stop after diam rounds.
 – Elect self iff own UID is max seen.
Leader election in general synchronous networks

- **states**
 - \(u \), initially UID
 - \(\text{max-uid} \), initially UID
 - \(\text{status} \in \{ \text{unknown}, \text{leader}, \text{not-leader} \} \), initially unknown
 - \(\text{rounds} \), initially 0

- **msgs**
 - if \(\text{rounds} < \text{diam} \) send \(\text{max-uid} \) to all out-nbrs

- **trans**
 - increment \(\text{round} \)
 - \(\text{max-uid} := \max (\text{max-uid}, \text{UIDs received}) \)
 - if \(\text{round} = \text{diam} \) then
 - \(\text{status} := \text{leader} \) if \(\text{max-uid} = u \), not-leader otherwise
Leader election in general network

Start configuration
Leader election in general network
Leader election in general network

Round 1 (trans)
Leader election in general network

Round 2 (start)
Leader election in general network

Round 2 (msgs)
Leader election in general network

Round 2 (trans)
Leader election in general network

Round 3 (start)
Leader election in general network

Round 3 (msgs)
Leader election in general network

Round 3 (trans)
Leader election in general network

Round 4 (start)
Leader election in general network

Round 4 (msgs)
Leader election in general network

Round 4 (trans)
Leader election in general network

• Basic flooding algorithm (summary):
 – Assume diameter is known (diam).
 – Every round: Send max UID seen to all neighbors.
 – Stop after diam rounds.
 – Elect self iff own UID is max seen.

• Complexity:
 – Time complexity (rounds): diam
 – Message complexity: diam |E|

• Correctness proof?
Key invariant

- **Invariant:** After round r, if $\text{distance}(i,j) \leq r$ then $\text{max-uid}_j \geq \text{UID}_i$.

- **Proof:**
 - Induction on r.
 - Base: $r = 0$
 - $\text{distance}(i,j) = 0$ implies $i = j$, and $\text{max-uid}_i = \text{UID}_i$.
 - Inductive step: Assume for $r-1$, prove for r.
 - If $\text{distance}(i,j) \leq r$ then there is a node k in in-nbrs_j such that $\text{distance}(i,k) \leq r - 1$.
 - By inductive hypotheses, after round $r-1$, $\text{max-uid}_k \geq \text{UID}_i$.
 - Since k sends its max to j at round r, $\text{max-uid}_j \geq \text{UID}_i$ after round r.
Reducing the message complexity

- Slightly optimized algorithm:
 - Don't send same UID twice.
 - New state var: new-info: Boolean, initially true
 - Send max-uid only if new-info = true
 - new-info := true iff max UID received > max-uid
Leader election in general network

Start configuration
Leader election in general network

Round 1 (msgs)
Leader election in general network

Round 1 (trans)
Leader election in general network

Round 2 (start)
Leader election in general network

Round 2 (msgs)
Leader election in general network

Round 2 (trans)
Leader election in general network

Round 3 (start)
Leader election in general network

Round 3 (msgs)
Leader election in general network

Round 3 (trans)
Leader election in general network

Round 4 (start)
Leader election in general network

Round 4 (msgs)
Leader election in general network

Round 4 (trans)
Leader election in general network

- Slightly optimized algorithm (summary):
 - Don't send same UID twice
 - New state variable: new-info: Boolean, initially true
 - Send max-uid just when new-info = true
 - new-info := true iff max UID received > max-uid
 - Can improve communication cost drastically, though not the worst-case bound, diam |E|.

- Correctness Proof?
 - As before, or:
 - Can use another important proof method for distributed algorithms: simulation relations.
Simulation relation

- Relates new algorithm formally to an original one that has already been proved correct.
- Correctness then carries over to new algorithm.
- Often used to show correctness of optimized algorithms.
- Can repeat in several stages, adding more optimizations.

- “Run the two algorithms side by side.”
- Define simulation relation between states of the two algorithms:
 - Satisfied by start states.
 - Preserved by every transition.
 - Outputs should be the same in related states.
Simulation relation for the optimized algorithm

• Key invariant of the optimized algorithm:
 – If \(i \in \text{in-nbrs}_j \) and \(\text{max-uid}_i > \text{max-uid}_j \) then \(\text{new-info}_i = \text{true} \).
 – That is, if \(i \) has better information than \(j \) has, then \(i \) is planning to send it to \(j \) on the next round.
 – Prove by induction.

• Simulation relation: All state variables of the basic algorithm (all but \(\text{new-info} \)) have the same values in both algorithms.

• Start condition: By definition.

• Preserved by every transition:
 – Key property: \(\text{max-uids} \) are always the same in the two algorithms.
 – Consider \(i \in \text{in-nbrs}_j \).
 – If \(\text{new-info}_i = \text{true} \) before the step, then the two algorithms behave the same with respect to \((i,j)\).
 – Otherwise, only the basic algorithm sends a message. However, by the invariant, \(\text{max-uid}_i \leq \text{max-uid}_j \) before the step, and the message has no effect.
Why all these proofs?

• Distributed algorithms can be quite complicated, subtle.
• Easy to make mistakes.
• So careful reasoning about algorithm steps is generally more important than for sequential algorithms.
Other problems besides leader election…

• Breadth-first search
• Breadth-first spanning trees, shortest-paths spanning trees,…
• Minimum spanning trees
• Maximal independent sets
Breadth-first search

• **Assume:**
 – Strongly connected digraph, UIDs.
 – No knowledge of size, diameter of network.
 – Distinguished source node \(i_0 \).

• **Required:** Breadth-first spanning tree, rooted at source node \(i_0 \).
 – Branches are directed paths in the given digraph.
 – Spanning: Includes every node.
 – Breadth-first: Node at distance \(d \) from \(i_0 \) appears at depth \(d \) in tree.
 – Output: Each node (except \(i_0 \)) sets a parent variable to indicate its parent in the tree.
Breadth-first search
Breadth-first search
Breadth-first search algorithm

- **Mark** nodes as they get incorporated into the tree.
- Initially, only i_0 is marked.
- **Round 1**: i_0 sends **search** message to out-nbrs.
- **At every round**: An unmarked node that receives a **search** message:
 - Marks itself.
 - Designates one process from which it received **search** as its parent.
 - Sends **search** to out-nbrs at the next round.

- **Q**: What state variables do we need?
- **Q**: Why does this yield a BFS tree?
Breadth-first search

Round 1 (start)
Breadth-first search

Round 1 (msgs)
Breadth-first search

Round 1 (trans)
Breadth-first search

Round 2 (start)
Breadth-first search

Round 2 (msgs)
Breadth-first search

Round 2 (trans)
Breadth-first search

Round 3 (start)
Breadth-first search

Round 3 (msgs)
Breadth-first search

Round 3 (trans)
Breadth-first search

Round 4 (start)
Breadth-first search

Round 4 (msgs)
Breadth-first search

Round 4 (trans)
Breadth-first search

Round 5 (start)
Breadth-first search

Round 5 (msgs)
Breadth-first search

Round 5 (trans)
Breadth-first search algorithm

- **Mark** nodes as they get incorporated into the tree.
- Initially, only i_0 is marked.
- **Round 1:** i_0 sends **search** message to out-nbrs.
- **At every round:** An unmarked node that receives a search message:
 - Marks itself.
 - Designates one process from which it received search as its parent.
 - Sends search to out-nbrs at the next round.
- Yields a BFS tree because all the branches are created synchronously.
- **Complexity:** Time = diam + 1; Messages = $|E|$
BFS, bells and whistles

- Child pointers?
 - Easy with bidirectional communication.
 - What if not?
 - Could use BFS to search for parents.
 - High message bit complexity.

- Termination?
 - With bidirectional communication?
 - “Convergecast”
 - With unidirectional communication?
Applications of BFS

- Message broadcast:
 - Can broadcast a message while setting up the BFS tree ("piggyback" the message).
 - Or, first establish a BFS tree, with child pointers, then use it for broadcasting.
 - Can reuse the tree for many broadcasts
 - Each takes time only $O(\text{diameter})$, messages $O(n)$.

- For the remaining applications, assume bidirectional edges (undirected graph).
Applications of BFS

- Global computation:
 - Sum, max, or any kind of data aggregation: Convergecast on BFS tree.
 - Complexity: Time $O(\text{diameter})$; Messages $O(n)$

- Leader election (without knowing diameter):
 - Everyone starts BFS, determines max UID.
 - Complexity: Time $O(\text{diam})$; Messages $O(n |E|)$ (actually, $O(\text{diam} |E|)$).

- Compute diameter:
 - All do BFS.
 - Convergecast to find height of each BFS tree.
 - Convergecast again to find max of all heights.
Next time

- More distributed algorithms in general synchronous networks:
 - Shortest paths (Bellman-Ford)
 - Minimum spanning trees
 - Maximal independent sets (just summarize)
- Reading: Sections 4.3-4.5.