6.852: Distributed Algorithms
Fall, 2009

Class 8
Today’s plan

- Basic asynchronous system model, continued
 - Hierarchical proofs
 - Safety and liveness properties
- Asynchronous networks
- Asynchronous network algorithms:
 - Leader election in a ring
 - Leader election in a general network
- Reading: Sections 8.5.3 and 8.5.5, Chapter 14, Sections 15.1-15.2.
- Next:
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning trees
 - Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]
Last time

• Defined basic math framework for modeling asynchronous systems.
• I/O automata
• Executions, traces
• Operations: Composition, hiding
• Proof methods and concepts
 – Compositional methods
 – Invariants
 – Trace properties, including safety and liveness properties.
 – Hierarchical proofs
Input/output automaton

- **sig** = (in, out, int)
 - input, output, internal actions (disjoint)
 - acts = in ∪ out ∪ int
 - ext = in ∪ out
 - local = out ∪ int

- **states**: Not necessarily finite
- **start** ⊆ states
- **trans** ⊆ states × acts × states
 - Input-enabled: Any input “enabled” in any state.
- **tasks**, partition of locally controlled actions
 - Used for liveness.
Channel automaton

- Reliable unidirectional FIFO channel between two processes.
 - Fix message alphabet M.

- signature
 - input actions: $\text{send}(m)$, $m \in M$
 - output actions: $\text{receive}(m)$, $m \in M$
 - no internal actions

- states
 - queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue

- **tasks**
 - All receive actions in one task.
Executions

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \ldots$ (if finite, ends in state)
 - s_0 is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step (i.e., in trans)

$\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda$
Execution fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution is a sequence:
 - \(s_0, \pi_1, s_1, \pi_2, s_2, \pi_3, s_3, \pi_4, s_4, \pi_5, s_5, \ldots \)
 - \(s_0 \) is a start state
 - \((s_i, \pi_{i+1}, s_{i+1}) \) is a step.
Traces

- Models external behavior, useful for defining correctness.
- A trace of an execution is the subsequence of external actions in the execution.
 - Denoted $\text{trace}(\alpha)$, where α is an execution.
 - No states, no internal actions.

\[
\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda
\]

\[
\text{send}(a), \text{send}(b), \text{receive}(a), \text{receive}(b)
\]
Composition of compatible automata

- Compose two automata A and B (see book for general case).
- \(\text{out}(A \times B) = \text{out}(A) \cup \text{out}(B) \)
- \(\text{int}(A \times B) = \text{int}(A) \cup \text{int}(B) \)
- \(\text{in}(A \times B) = \text{in}(A) \cup \text{in}(B) - (\text{out}(A) \cup \text{out}(B)) \)
- \(\text{states}(A \times B) = \text{states}(A) \times \text{states}(B) \)
- \(\text{start}(A \times B) = \text{start}(A) \times \text{start}(B) \)
- \(\text{trans}(A \times B): \) includes \((s, \pi, s') \) iff
 - \((s_A, \pi, s'_A) \in \text{trans}(A) \) if \(\pi \in \text{acts}(A) \); \(s_A = s'_A \) otherwise.
 - \((s_B, \pi, s'_B) \in \text{trans}(B) \) if \(\pi \in \text{acts}(B) \); \(s_B = s'_B \) otherwise.
- \(\text{tasks}(A \times B) = \text{tasks}(A) \cup \text{tasks}(B) \)

- Notation: \(\prod_{i \in I} A_i \), for composition of \(A_i : i \in I \) (I countable)
Hierarchical proofs
Hierarchical proofs

- Important strategy for proving correctness of complex asynchronous distributed algorithms.
- Define a series of automata, each implementing the previous one ("successive refinement").
- Highest-level = Problem specification.
- Then a high-level algorithm description.
- Then more and more detailed versions, e.g.:
 - High levels centralized, lower levels distributed.
 - High levels inefficient but simple, lower levels optimized and more complex.
 - High levels with large granularity steps, lower levels with finer granularity steps.
- Reason about lower levels by relating them to higher levels.
- Similar to what we did for synchronous algorithms.
Hierarchical proofs

• For synchronous algorithms (recall):
 – Optimized algorithm runs side-by-side with unoptimized version, and “invariant” proved to relate the states of the two algorithms.
 – Prove using induction.

• For asynchronous algorithms, it’s harder:
 – Asynchronous model has more nondeterminism (in choice of new state, in order of steps).
 – So, harder to determine which execs to compare.

• One-way implementation is enough:
 – For each execution of the lower-level algorithm, there is a corresponding execution of the higher-level algorithm.
 – “Everything the algorithm does is allowed by the spec.”
 – Don’t need the other direction: doesn’t matter if the algorithm does everything that is allowed.
Simulation relations

- Most common method of proving that one automaton implements another.
- Assume A and B have the same extsig, and R is a relation from states(A) to states(B).
- Then R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A R s_B$.
 - If s_A, s_B are reachable states of A and B, $s_A R s_B$ and (s_A, π, s'_A) is a step, then there is an execution fragment β starting with s_B and ending with s'_B such that $s'_A R s'_B$ and $\text{trace}(\beta) = \text{trace}(\pi)$.
Simulation relations

- \(R \) is a simulation relation from A to B provided:
 - \(s_A \in \text{start}(A) \) implies \(\exists s_B \in \text{start}(B) \) such that \(s_A R s_B \).
 - If \(s_A, s_B \) are reachable states of A and B, \(s_A R s_B \) and \((s_A, \pi, s'_A) \) is a step, then \(\exists \beta \) starting with \(s_B \) and ending with \(s'_B \) such that \(s'_A R s'_B \) and \(\text{trace}(\beta) = \text{trace}(\pi) \).
Simulation relations

- **Theorem:** If there is a simulation relation from A to B then traces(A) ⊆ traces(B).
- This means all traces of A, not just finite traces.
- **Proof:** Fix a trace of A, arising from a (possibly infinite) execution of A.
- Create a corresponding execution of B, using an iterative construction.

\[S_0,A \xrightarrow{\Pi_1} S_1,A \xrightarrow{\Pi_2} S_2,A \xrightarrow{\Pi_3} S_3,A \xrightarrow{\Pi_4} S_4,A \xrightarrow{\Pi_5} S_5,A \]
Simulation relations

- **Theorem:** If there is a simulation relation from A to B then \(\text{traces}(A) \subseteq \text{traces}(B) \).
Simulation relations

- Theorem: If there is a simulation relation from A to B then $\text{traces}(A) \subseteq \text{traces}(B)$.

\[
\begin{align*}
\pi_1 : S_{0,A} &\rightarrow S_{1,A} \\
\pi_2 : S_{1,A} &\rightarrow S_{2,A} \\
\pi_3 : S_{2,A} &\rightarrow S_{3,A} \\
\pi_4 : S_{3,A} &\rightarrow S_{4,A} \\
\pi_5 : S_{4,A} &\rightarrow S_{5,A}
\end{align*}
\]
Simulation relations

- Theorem: If there is a simulation relation from \(A \) to \(B \) then \(\text{traces}(A) \subseteq \text{traces}(B) \).
Example: Channels

- Show two channels implement one.

- Rename some actions.
- Claim that $D = \text{hide}_{\{\text{pass}(m)\}} A \times B$ implements C, in the sense that $\text{traces}(D) \subseteq \text{traces}(C)$.
Recall: Channel automaton

- Reliable unidirectional FIFO channel.
- signature
 - Input actions: send(m), m ∈ M
 - output actions: receive(m), m ∈ M
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to queue
 - receive(m)
 - precondition: m = head(queue)
 - effect: remove head of queue

- **tasks**
 - All receive actions in one task
Composing two channel automata

- Output of B is input of A
 - Rename receive(m) of B and send(m) of A to pass(m).
- \(D = \text{hide} \{ \text{pass}(m) \mid m \in M \} \) \(A \times B \) implements C
- Define simulation relation \(R \):
 - For \(s \in \text{states}(D) \) and \(u \in \text{states}(C) \), \(s R u \) iff \(u.\text{queue} \) is the concatenation of \(s.A.\text{queue} \) and \(s.B.\text{queue} \)
- Proof that this is a simulation relation:
 - Start condition: All queues are empty, so start states correspond.
 - Step condition: Define “step correspondence”:
Composing two channel automata

\[
\text{s } R \text{ u iff u.queue is concatenation of s.A.queue and s.B.queue}
\]

- **Step correspondence:**
 - For each step \((s, \pi, s') \in \text{trans}(D)\) and u such that \(s R u\), define execution fragment \(\beta\) of C:
 - Starts with \(u\), ends with \(u'\) such that \(s' R u'\).
 - \(\text{trace}(\beta) = \text{trace}(\pi)\)
 - Here, actions in \(\beta\) happen to depend only on \(\pi\), and uniquely determine post-state.
 - Same action if external, empty sequence if internal.
Composing two channel automata

\[s \; R \; u \; \text{iff} \; u.\text{queue} \; \text{is concatenation of} \; s.A.\text{queue} \; \text{and} \; s.B.\text{queue} \]

- **Step correspondence:**
 - \(\pi = \text{send}(m) \) in D corresponds to \(\text{send}(m) \) in C
 - \(\pi = \text{receive}(m) \) in D corresponds to \(\text{receive}(m) \) in C
 - \(\pi = \text{pass}(m) \) in D corresponds to \(\lambda \) in C

- **Verify that this works:**
 - Actions of C are enabled.
 - Final states related by relation R.

- **Routine case analysis:**
Showing R is a simulation relation

\[s \ R \ u \ \text{iff} \ u.\text{queue} \text{ is concatenation of } s.A.\text{queue} \text{ and } s.B.\text{queue} \]

- **Case:** \(\pi = \text{send}(m) \)
 - No enabling issues (input).
 - Must check \(s' \ R \ u' \).
 - Since \(s \ R \ u \), \(u.\text{queue} \) is the concatenation of \(s.A.\text{queue} \) and \(s.B.\text{queue} \).
 - Adding the same \(m \) to the end of \(u.\text{queue} \) and \(s.B.\text{queue} \) maintains the correspondence.

- **Case:** \(\pi = \text{receive}(m) \)
 - Enabling: Check that \(\text{receive}(m) \), for the same \(m \), is also enabled in \(u \).
 - We know that \(m \) is first on \(s.A.\text{queue} \).
 - Since \(s \ R \ u \), \(m \) is first on \(u.\text{queue} \).
 - So enabled in \(u \).
 - \(s' \ R \ u' \): Since \(m \) removed from both \(s.A.\text{queue} \) and \(u.\text{queue} \).
Showing R is a simulation relation

$s \ R \ u$ iff u.queue is concatenation of s.A.queue and s.B.queue

- **Case**: $\pi = \text{pass}(m)$
 - No enabling issues (since no high-level steps are involved).
 - Must check $s' \ R \ u$:
 - Since $s \ R \ u$, u.queue is the concatenation of s.A.queue and s.B.queue.
 - Concatenation is unchanged as a result of this step, so also u.queue is the concatenation of s'.A.queue and s'.B.queue.
Safety and liveness properties
Specifications

• **Trace property:**
 – Problem specification in terms of external behavior.
 – \((\text{sig}(P), \text{traces}(P))\)

• Automaton \(A\) satisfies trace property \(P\) if \(\text{extsig}(A) = \text{sig}(P)\) and (two different notions, depending on whether we’re interested in liveness or not):
 – \(\text{traces}(A) \subseteq \text{traces}(P)\), or
 – \(\text{fairtraces}(A) \subseteq \text{traces}(P)\).

• All the problems we’ll consider for asynchronous systems can be formulated as trace properties.

• And we’ll usually be concerned about liveness, so we will use the second notion.
Safety property S

- traces(S) are nonempty, prefix-closed, and limit-closed.
- “Something bad” never happens.
- Violations occur at some finite point in the sequence.

- **Examples** (we’ll see all these later):
 - Consensus: Agreement, validity
 - Describe as set of sequences of init and decide actions in which we never disagree, or never violate validity.
 - Graph algorithms: Correct shortest paths, correct minimum spanning trees,…
 - Outputs do not yield any incorrect answers.
 - Mutual exclusion: No two grants without intervening returns.
Proving a safety property

• That is, prove that all traces of A satisfy S.
• By limit-closure, it’s enough to prove that all finite traces satisfy S.
• Can do this by induction on length of trace.
• Using invariants:
 – For most trace safety properties, can find a corresponding invariant.
 – Example: Consensus
 • Record decisions in the state.
 • Express agreement and validity in terms of recorded decisions.
 – Then prove the invariant as usual, by induction.
Liveness property L

- Every finite sequence over \(\text{sig}(L) \) has some extension in \(\text{traces}(L) \).

- Examples:
 - Temination: No matter where we are, we could still terminate in the future.
 - Some event happens infinitely often.

- Proving liveness properties:
 - Measure progress toward goals, using progress functions.
 - Intermediate milestones.
 - Formal reasoning using temporal logic.
 - Methods less well-established than those for safety properties.
Safety and liveness

• **Theorem:** Every trace property can be expressed as the intersection of a safety and a liveness property.

• So, to specify a property, it’s enough to specify safety requirements and liveness requirements separately.

• Typical specifications of problems for asynchronous systems consist of:
 – A list of safety properties.
 – A list of liveness properties.
 – Nothing else.
Asynchronous network model
Send/receive systems

- Digraph $G = (V,E)$, with:
 - Process automata associated with nodes, and
 - Channel automata associated with directed edges.
- Model processes and channels as automata, compose.
- Processes

 - User interface: inv, resp.
 - Problems specified in terms of allowable traces at user interface
 - Hide send/receive actions
 - Failure modeling, e.g.:
 - Having explicit stop actions in external interface allows problems to be stated in terms of occurrence of failures.
Different kinds of channel with this interface:
- Reliable FIFO, as before.
- Weaker guarantees: Lossy, duplicating, reordering

Can define channels by trace properties, using a “cause” function mapping receives to sends.
- Integrity: Cause function preserves message.
- No loss: Function is onto (surjective).
- No duplicates: Function is 1-1 (injective).
- No reordering: Function is order-preserving.

Reliable channel satisfies all of these; weaker channels satisfy Integrity but weaken some of the other properties.
Broadcast and multicast

- **Broadcast**
 - Reliable FIFO between each pair.
 - Different processes can receive msgs from different senders in different orders.
 - Model using separate queues for each pair.

- **Multicast:** Processes designate recipients.

- Also consider bcast, mcast with failures, and/or with additional consistency conditions.
Asynchronous network algorithms
Asynchronous network algorithms

- Assume reliable FIFO point-to-point channels
- Revisit problems we considered in synchronous networks:
 - Leader election:
 - In a ring.
 - In general undirected networks.
 - Spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree
- How much carries over?
 - Where did we use synchrony assumption?
Leader election in a ring

• Assumptions:
 – G is a ring, unidirectional or bidirectional communication
 – Local names for neighbors, UIDs

• LeLann-Chang-Roberts (AsynchLCR)
 – Send UID clockwise around ring (unidirectional).
 – Discard UIDs smaller than your own.
 – Elect self if your UID comes back.
 – Correctness: Basically the same as for synchronous version, with a few complications:
 • Finer granularity, consider individual steps rather than entire rounds.
 • Must consider messages in channels.
AsynchLDR, process i

- **Signature**
 - in \(\text{rcv}(v)_{i-1,i} \), \(v \) is a UID
 - out \(\text{send}(v)_{i,i+1} \), \(v \) is a UID
 - out \(\text{leader}_i \)

- **State variables**
 - \(u \): UID, initially i’s UID
 - send: FIFO queue of UIDs, initially containing i’s UID
 - status: unknown, chosen, or reported, initially unknown

- **Tasks**
 - \{ \(\text{send}(v)_{i,i+1} \) | \(v \) is a UID \} and \{ \(\text{leader}_i \) \}

- **Transitions**
 - \(\text{send}(v)_{i,i+1} \)
 - pre: \(v = \text{head}(\text{send}) \)
 - eff: remove head of send
 - \(\text{receive}(v)_{i-1,i} \)
 - eff:
 - if \(v = u \) then \(\text{status} := \text{chosen} \)
 - if \(v > u \) then add \(v \) to send
 - \(\text{leader}_i \)
 - pre: \(\text{status} = \text{chosen} \)
 - eff: \(\text{status} := \text{reported} \)
AsynchLCR properties

- **Safety**: No process other than i_{max} ever performs leader$_i$.
- **Liveness**: i_{max} eventually performs leader$_i$.
Safety proof

- **Safety**: No process other than i_{max} ever performs leader$_i$.

- Recall synchronous proof, based on showing invariant of global states, after any number of **rounds**:
 - If $i \neq i_{\text{max}}$ and $j \in [i_{\text{max}}, i)$ then u_i not in send$_j$.

- Can use a similar invariant for the asynchronous version.

- But now the invariant must hold after any number of **steps**:
 - If $i \neq i_{\text{max}}$ and $j \in [i_{\text{max}}, i)$ then u_i not in send$_j$ or in queue$_{j,j+1}$.

- Prove by induction on number of steps.
 - Use cases based on type of action.
 - Key case: receive(v)$_{i_{\text{max}}-1, i_{\text{max}}}$
 - Argue that if $v \neq u_{\text{max}}$ then v gets discarded.
Liveness proof

- **Liveness**: \(i_{\text{max}} \) eventually performs leader \(i \).

- Synchronous proof used an invariant saying exactly where the max is after \(r \) rounds.
- Now no rounds, need a different proof.
- Can establish intermediate milestones:
 - For \(k \in [0,n-1] \), \(u_{\text{max}} \) eventually in send \(i_{\text{max}+k} \)
 - Prove by induction on \(k \); use fairness for process and channel to prove inductive step.
Complexity

- **Msgs:** $O(n^2)$, as before.

- **Time:** $O(n(l+d))$
 - l is an upper bound on local step time for each process (that is, for each process task).
 - d is an upper bound on time to deliver first message in each channel (that is, for each channel task).
 - Measuring real time here (not counting rounds).
 - Only upper bounds, so does not restrict executions.
 - Bound still holds in spite of the possibility of “pileups” of messages in channels and send buffers.
 - Pileups can be interpreted as meaning that some tokens have sped up.
 - See analysis in book.
Reducing the message complexity

- **Hirschberg-Sinclair:**
 - Sending in both directions, to successively doubled distances.
 - Extends immediately to asynchronous model.
 - $O(n \log n)$ messages.
 - Use bidirectional communication.

- **Peterson's algorithm:**
 - $O(n \log n)$ messages
 - Unidirectional communication
 - Unknown ring size
 - Comparison-based
Peterson’s algorithm

- Proceed in asynchronous “phases” (may execute concurrently).
- In each phase, each process is active or passive.
 - Passive processes just pass messages along.
- In each phase, at least half of the active processes become passive; so at most \(\log n \) phases until election.
- **Phase 1:**
 - Send UID two processes clockwise; collect two UIDs from predecessors.
 - Remain active iff the middle UID is max.
 - In this case, adopt middle UID (the max one).
 - Some process remains active (assuming \(n \geq 2 \), but no more than half.
- **Later phases:**
 - Same, except that the passive processes just pass messages on.
 - No more than half of those active at the beginning of the phase remain active.
- **Termination:**
 - If a process sees that its immediate predecessor’s UID is the same as its own, elects itself the leader (knows it’s the only active process left).
PetersonLeader

- **Signature**
 - \textit{in} receive(v)_{i-1,i}, v is a UID
 - \textit{out} send(v)_{i,i+1}, v is a UID
 - \textit{out} leader_i

- \textit{int} get-second-uid_i
- \textit{int} get-third-uid_i
- \textit{int} advance-phase_i
- \textit{int} become-relay_i
- \textit{int} relay_i

- **State variables**
 - \textit{mode}: active or relay, initially active
 - \textit{status}: unknown, chosen, or reported, initially unknown
 - \textit{uid1}; initially i's UID
 - \textit{uid2}; initially null
 - \textit{uid3}; initially null
 - \textit{send}: FIFO queue of UIDs; initially contains i's UID
 - \textit{receive}: FIFO queue of UIDs
PetersonLeader

- **get-second-uid_i**
 pre: **mode** = active
 receive is nonempty
 uid2 = null
 eff: **uid2** := head(**receive**)
 remove head of **receive**
 add **uid2** to **send**
 if **uid2** = **uid1** then
 status := chosen

- **advance-phase_i**
 pre: **mode** = active
 uid3 ≠ null
 uid2 > max(\(\text{uid1}, \text{uid3}\))
 eff: **uid1** := **uid2**
 uid2 := null
 uid3 := null
 add **uid1** to **send**

- **get-third-uid_i**
 pre: **mode** = active
 receive is nonempty
 uid2 ≠ null
 uid3 = null
 eff: **uid3** := head(**receive**)
 remove head of **receive**

- **become-relay_i**
 pre: **mode** = active
 uid3 ≠ null
 uid2 ≤ max(\(\text{uid1}, \text{uid3}\))
 eff: **mode** := relay

- **relay_i**
 pre: **mode** = relay
 receive is nonempty
 eff: move head(\(\text{receive}\)) to **send**
PetersonLeader

- **Tasks:**
 - \{ send(v)_{i,i+1} \mid v \text{ is a UID} \}
 - \{ \text{get-second-uid}_i, \text{get-third-uid}_i, \text{advance-phase}_i, \text{become-relay}_i, \text{relay}_i \}
 - \{ \text{leader}_i \}

- **Number of phases is** \(O(\log n)\)

- **Complexity**
 - Messages: \(O(n \log n)\)
 - Time: \(O(n(l+d))\)
Leader election in a ring

- Can we do better than $O(n \log n)$ message complexity?
 - Not with comparison-based algorithms. (Why?)
 - Not at all: Can prove a lower bound.
Lower bound for leader election in asynchronous network.

Assume:
- Ring size n is unknown (algorithm must work in arbitrary size rings).
- UIDS:
 - Chosen from some infinite set.
 - No restriction on allowable operations.
 - All processes identical except for UIDs.
- Bidirectional communication allowed.

Consider combinations of processes to form:
- Rings, as usual.
- Lines, where nothing is connected to the ends and no input arrives there.
- Ring looks like line if communication delayed across ends.
\(\Omega(n \log n) \) lower bound

- **Lemma 1:** There are infinitely many process automata, each of which can send at least one message without first receiving one (in some execution).
- **Proof:**
 - If not, there are two processes \(i, j \), neither of which ever sends a message without first receiving one.
 - Consider 1-node ring:
 - \(i \) must elect itself, with no messages sent or received.
 - Consider:
 - \(j \) must elect itself, with no messages sent or received.
 - Now consider:
 - Both \(i \) and \(j \) elect themselves, contradiction.
Ω(n log n) lower bound

- **C(L)** = maximum (actually, supremum) of the number of messages that are sent in a single input-free execution of line L.

- **Lemma 2**: If L₁, L₂, L₃ are three line graphs of even length l such that C(Lᵢ) ≥ k for i = 1, 2, 3, then C(Lᵢ join Lⱼ) ≥ 2k + l/2 for some i ≠ j

- **Proof**:
 - Suppose not.
 - Consider two lines, L₁ join L₂ and L₂ join L₁.
Proof of Lemma 2

- Let α_i be finite execution of L_i with $\geq k$ messages.
- Run α_1 then α_2 then $\alpha_{1,2}$, an execution fragment of L_1 join L_2 beginning with messages arriving across the join boundary.
- By assumption, fewer than $l/2$ additional messages are sent in $\alpha_{1,2}$.
- So, the effects of the new inputs don’t cross the middle edges of L_1 and L_2 before the system quiesces (no more messages sent).

- Similarly for $\alpha_{2,1}$, an execution of L_2 join L_1.

\begin{itemize}
 \item \end{itemize}
Proof of Lemma 2

• Now consider three rings:
Proof of Lemma 2

- Connect both ends of L_1 and L_2.
 - Right neighbor in line is clockwise around ring.
- Run α_1 then α_2 then $\alpha_{1,2}$ then $\alpha_{2,1}$.
 - No interference between $\alpha_{1,2}$ and $\alpha_{2,1}$.
 - Quiesces: Eventually no more messages are sent.
 - Must elect leader (possibly in extension, but without any more messages).
- Assume WLOG that elected leader is in “bottom half”.
Proof of Lemma 2

- Same argument for ring constructed from \(L_2 \) and \(L_3 \).
- Can leader be in bottom half?
- No!
- So must be in top half.
Proof of Lemma 2
Proof of Lemma 2
Summarizing, we have:

- **Lemma 1**: There are infinitely many process automata, each of which can send at least one message without first receiving one.

- **Lemma 2**: If L_1, L_2, L_3 are three line graphs of even length l such that $C(L_i) \geq k$ for all i, then $C(L_i \text{ join } L_j) \geq 2k + l/2$ for some $i \neq j$.

Now combine:

- **Lemma 3**: For any $r \geq 0$, there are infinitely many disjoint line graphs L of length 2^r such that $C(L) \geq r \cdot 2^{r-2}$.

 - **Base ($r = 0$)**: Trivial claim.

 - **Base ($r = 1$)**: Use Lemma 1

 - Just need length-2 lines sending at least one message.

 - **Inductive step ($r \geq 2$)**:

 - Choose L_1, L_2, L_3 of length 2^{r-1} with $C(L_i) \geq (r-1) \cdot 2^{r-3}$.

 - By Lemma 2, for some i, j, $C(L_i \text{ join } L_j) \geq 2(r-1)2^{r-3} + 2^{r-1}/2 = r \cdot 2^{r-2}$.
Lower bound, cont’d

- **Lemma 3:** For any \(r \geq 0 \), there are infinitely many disjoint line graphs \(L \) of length \(2^r \) such that \(C(L) \geq r 2^{r-2} \).

- **Theorem:** For any \(r \geq 0 \), there is a ring \(R \) of size \(n = 2^r \) such that \(C(R) = \Omega(n \log n) \).
 - Choose \(L \) of length \(2^r \) such that \(C(L) \geq r 2^{r-2} \).
 - Connect ends, but delay communication across boundary.

- **Corollary:** For any \(n \geq 0 \), there is a ring \(R \) of size \(n \) such that \(C(R) = \Omega(n \log n) \).
Leader election in general networks

- Undirected graphs.
- Can get asynchronous version of synchronous FloodMax algorithm:
 - Simulate rounds with counters.
 - Need to know diameter for termination.
- We’ll see better asynchronous algorithms later:
 - Don’t need to know diameter.
 - Lower message complexity.
- Depend on techniques such as:
 - Breadth-first search
 - Convergecast using a spanning tree
 - Synchronizers to simulate synchronous algorithm
 - Consistent global snapshots to detect termination.
Next lecture

- More asynchronous network algorithms
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree (GHS)

- Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]