Class 9
Today’s plan

- Basic asynchronous network algorithms
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree

- Reading: Sections 15.3-15.5, [Gallager, Humblet, Spira]

Next lecture:
- Synchronizers
- Reading: Chapter 16.
Last time

- Formal model for asynchronous networks.
- Leader election algorithms for asynchronous ring networks (LCR, HS, Peterson).
- Lower bound for leader election in an asynchronous ring.
- Leader election in general asynchronous networks (didn’t quite get there).
Leader election in general networks

- Undirected graphs.
- Can get asynchronous version of synchronous FloodMax algorithm:
 - Simulate rounds with counters.
 - Need to know diameter for termination.
- We’ll see better asynchronous algorithms later:
 - Don’t need to know diameter.
 - Lower message complexity.
- Depend on techniques such as:
 - Breadth-first search
 - Convergecast using a spanning tree
 - Synchronizers to simulate synchronous algorithms
 - Consistent global snapshots to detect termination
Spanning trees and searching

- Spanning trees are used for communication, e.g., broadcast/convergecast.
- Start with the simple task of setting up some (arbitrary) spanning tree with a (given) root i_0.
- **Assume:**
 - Undirected, connected graph (i.e., bidirectional communication).
 - Root i_0
 - Size and diameter unknown.
 - UIDs, with comparisons.
 - Can identify in- and out-edges to same neighbor.
- **Require:** Each process should output its parent in tree, with a parent output action.
- **Starting point:** SynchBFS algorithm:
 - i_0 floods search message; parent of a node is the first node from which it receives a search message.
 - Try running the same algorithm in asynchronous network.
 - Still yields spanning tree, but not necessarily breadth-first tree.
AsynchSpanningTree, Process i

- **Signature**
 - *in* receive("search")$_{j,i}$, $j \in$ nbrs
 - *out* send("search")$_{i,j}$, $j \in$ nbrs
 - *out* parent(j)$_i$, $j \in$ nbrs

- **State**
 - **parent**: nbrs U { null }, init null
 - **reported**: Boolean, init false
 - for each $j \in$ nbrs:
 - **send**(j) \in { search, null }, init search if $i = i_0$, else null

- **send**("search")$_{i,j}$
 - *pre*: send(j) = search
 - *eff*: send(j) := null

- **receive**("search")$_{j,i}$
 - *eff*: if $i \neq i_0$ and parent = null then
 - parent := j
 - for $k \in$ nbrs - { j } do
 - send(k) := search

- parent(j)$_i$
 - *pre*: parent = j
 - *eff*: reported := false
 - reported := true
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree
AsynchSpanningTree

- **Complexity**
 - Messages: $O(|E|)$
 - Time: $\text{diam}(l+d) + l$

- **Anomaly:** Paths may be longer than diameter!
 - Messages may travel faster along longer paths, in asynchronous networks.
Applications of AsynchSpanningTree

- Similar to synchronous BFS
- Message broadcast: Piggyback on search message.
- Child pointers: Add responses to search messages, easy because of bidirectional communication.
- Use precomputed tree for bcast/convergecast
 - Now the timing anomaly arises.
 - $O(h(l+d))$ time complexity.
 - $O(|E|)$ message complexity.
 - See book for details.

$h = \text{height of tree; may be } n$
More applications

- Asynchronous broadcast/convergecast:
 - Can also construct spanning tree while using it to broadcast message and also to collect responses.
 - E.g., to tell the root when the bcast is done, or to collect aggregated data.
 - Complexity:
 - $O(|E|)$ message complexity.
 - $O(n(l+d))$ time complexity, timing anomaly.
 - See book for details.

- Elect leader when nodes have no info about the network (no knowledge of n, diam, etc.; no root, no spanning tree):
 - All independently initiate AsynchBcastAck, use it to determine max, max elects itself.
Breadth-first spanning tree

- Assume (same as above):
 - Undirected, connected graph (i.e., bidirectional communication).
 - Root i_0.
 - Size and diameter unknown.
 - UIDs, with comparisons.
- Require: Each process should output its parent in a breadth-first spanning tree.
- In asynchronous networks, modified SynchBFS does not guarantee that the spanning tree constructed is breadth-first.
 - Long paths may be traversed faster than short ones.
- Can modify each process to keep track of distance, change parent when it hears of shorter path.
 - Relaxation algorithm (like Bellman-Ford).
 - Must inform neighbors of changes.
 - Eventually, tree stabilizes to a breadth-first spanning tree.
AsynchBFS

- **Signature**
 - *in* `receive(m)_{j,i}`, `m ∈ N`, `j ∈ nbrs`
 - *out* `send(m)_{i,j}`, `m ∈ N`, `j ∈ nbrs`

- **State**
 - `dist`: `N U {∞}`, init 0 if `i = i_0`, else `∞`
 - `parent`: `nbrs U {null}`, init `null`
 - for each `j ∈ nbrs`:
 - `send(j)`: FIFO queue of `N`, init (0) if `i = i_0`, else `∅`

- `send(m)_{i,j}`
 - pre: `m = head(send(j))`
 - eff: remove head of `send(j)`

- `receive(m)_{j,i}`
 - eff: if `m+1 < dist` then
 - `dist := m + 1`
 - `parent := j`
 - for `k ∈ nbrs - {j}` do
 - add `dist` to `send(k)`

Note: No parent actions---no one knows when the algorithm is done
AsynchBFS

Diagram of a graph with nodes labeled 0, 1, 2, 3, 6, and edges connecting them.
AsynchBFS
AsynchBFS
AsynchBFS

- **Complexity:**
 - **Messages:** $O(n |E|)$
 - May send $O(n)$ messages on each link (one for each distance estimate).
 - **Time:** $O(\text{diam } n \ (l+d))$ (taking pileups into account).
 - Can reduce complexity if know bound D on diameter:
 - Allow only distance estimates $\leq D$.
 - **Messages:** $O(D |E|)$; **Time:** $O(\text{diam } D \ (l+d))$

- **Termination:**
 - No one knows when this is done, so can’t produce parent outputs.
 - Can augment with acks for search messages, convergecast back to i_0.
 - i_0 learns when the tree has stabilized, tells everyone else.
 - A bit tricky:
 - Tree grows and shrinks.
 - Some processes may participate many times, as they learn improvements.
 - Bookkeeping needed.
 - Complexity?
Layered BFS

- Asynchrony leads to many corrections, which lead to lots of communication.

- **Idea**: Slow down communication, grow the tree in synchronized phases.
 - In phase k, incorporate all nodes at distance k from i_0.
 - i_0 synchronizes between incorporating nodes at distance k and $k+1$.

- **Phase 1**:
 - i_0 sends \texttt{search} messages to neighbors.
 - Neighbors set $\text{dist} := 1$, send \texttt{acks} to i_0.

- **Phase $k+1$**:
 - Assume phases 1,…,k are completed: each node at distance $\leq k$ knows its parent, and each node at distance $\leq k-1$ also knows its children.
 - i_0 broadcasts \texttt{newphase} message along tree edges, to distance k processes.
 - Each of these sends \texttt{search} message to all neighbors except its parent.
 - When any non- i_0 process receives first \texttt{search} message, sets $\text{parent} :=$ sender and sends a positive \texttt{ack}; sends \texttt{nacks} for subsequent \texttt{search} msgs.
 - When distance k process receives \texttt{acks/nacks} for all its \texttt{search} messages, designates nodes that sent positive \texttt{acks} as its children.
 - Then distance k processes convergecast back to i_0 along depth k tree to say that they’re done; include a bit saying whether new nodes were found.
Layered BFS

- **Terminates:** When \(i_0 \) learns, in some phase, that no new nodes were found.
- **Obviously produces BFS tree.**
- **Complexity:**
 - **Messages:** \(O(|E| + n \text{ diam}) \)

 Each edge explored at most once in each direction by search/ack.

 Each tree edge traversed at most once in each phase by newphase/convergecast.

- **Time:**
 - Use simplified analysis:
 - Neglecting local computation time \(l \)
 - Assuming that every message in a channel is delivered in time \(d \) (ignoring congestion delays).
 - \(O(\text{diam}^2 \ d) \)
LayeredBFS vs AsynchBFS

- **Message complexity:**
 - AsynchBFS: $O(\text{diam } |E|)$, assuming diam is known, $O(n |E|)$ if not
 - LayeredBFS: $O(|E| + n \text{ diam})$

- **Time complexity:**
 - AsynchBFS: $O(\text{diam } d)$
 - LayeredBFS: $O(\text{diam}^2 d)$

- Can also define “hybrid” algorithm (in book)
 - Add m layers in each phase.
 - Within each phase, layers constructed asynchronously.
 - Intermediate performance.
Shortest paths

● Assumptions:
 – Same as for BFS, plus edge weights.
 – \(\text{weight}(i,j) \), nonnegative real, same in both directions.

● Require:
 – Output shortest distance and parent in shortest-paths tree.

● Use Bellman-Ford asynchronously
 – Can augment with convergecast as for BFS, for termination.
 – But worst-case complexity is very bad…
AsynchBellmanFord

- **Signature**
 - \textit{in} receive(w)_{j,i}, m \in R^\geq 0, j \in \text{nbrs}
 - \textit{out} send(w)_{i,j}, m \in R^\geq 0, j \in \text{nbrs}

- **State**
 - \texttt{dist}: R^\geq 0 \cup \{\infty\}, init 0 if \(i = i_0\), else \(\infty\)
 - \texttt{parent}: \text{nbrs} \cup \{\text{null}\}, init \text{null}
 - for each \(j \in \text{nbrs}:
 - \texttt{send}(j): \text{FIFO queue of } R^\geq 0;
 \text{init} (0) \text{ if } i = i_0, \text{else empty}

- **Transitions**
 - \texttt{send}(w)_{i,j}
 pre: \(m = \text{head}(\text{send}(j))\)
 eff: remove head of \text{send}(j)
 - \texttt{receive}(w)_{j,i}
 eff: if \(w + \text{weight}(j,i) < \text{dist}\) then
 \text{dist} := w + \text{weight}(j,i)
 \text{parent} := j
 for \(k \in \text{nbrs} - \{j\}\) do
 add \text{dist} to \text{send}(k)
AsynchBellmanFord

- **Termination:**
 - Use convergecast (as for AsynchBFS).

- **Complexity:**
 - $O(n!)$ simple paths from i_0 to any other node, which is $O(n^n)$.
 - So the number of messages sent on any channel is $O(n^n)$.
 - So message complexity = $O(n^n |E|)$, time complexity = $O(n^n n (l+d))$.
 - **Q:** Are the message and time complexity really exponential in n?
 - **A:** Yes: In some execution of network below, i_k sends 2^k messages to i_{k+1}, so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.

![Diagram of network](attachment:network_diagram.png)
Exponential time/message complexity

- i_k sends 2^k messages to i_{k+1}, so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.
- Possible distance estimates for i_k are $2^k - 1$, $2^k - 2$, ..., 0.
- Moreover, i_k can take on all these estimates in sequence:
 - First, messages traverse upper links, $2^k - 1$.
 - Then last lower message arrives at i_k, $2^k - 2$.
 - Then lower message $i_{k-2} \rightarrow i_{k-1}$ arrives, reduces i_{k-1}’s estimate by 2, message $i_{k-1} \rightarrow i_k$ arrives on upper links, $2^k - 3$.
 - Etc. Count down in binary.
 - If this happens quickly, get pileup of 2^k search messages in $C_{k,k+1}$.
Shortest Paths

- Moral: Unrestrained asynchrony can cause problems.
- Return to this problem after we have better synchronization methods.
- Now, another good illustration of the problems introduced by asynchrony:
Minimum spanning tree

- **Assumptions:**
 - \(G = (V,E) \) connected, undirected.
 - Weighted edges, weights known to endpoint processes, weights distinct.
 - UIDs
 - Processes don’t know \(n, \text{diam} \).
 - Can identify in- and out-edges to same neighbor.
 - Input: **wakeup** actions, occurring at any time at one or more nodes.
 - Process wakes up when it first receives either a **wakeup** input or a protocol message.

- **Requires:**
 - Produce MST, where each process knows which of its incident edges belong to the tree.
 - Guaranteed to be unique, because of unique weights.

- **Gallager-Humblet-Spira** algorithm: Read this paper!
Recall synchronous algorithm

- Proceeds in phases (levels).
- After each phase, we have a spanning forest, in which each component tree has a leader.
- In each phase, each component finds min weight outgoing edge (MWOE), then components merge using all MWOEs to get components for next phase.
- In more detail:
 - Each node is initially in component by itself (level 0 components).
 - Phase 1 (produces level 1 components):
 - Each node uses its min weight edge as the component MWOE.
 - Send connect message across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Phase k+1 (produces level k+1 components):
Synchronous algorithm

- **Phase 1 (produces level 1 components):**
 - Each node uses its min weight edge as the component MWOE.
 - Send **connect** across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.

- **Phase k+1 (produces level k+1 components):**
 - Leader of each component initiates search for MWOE (broadcast **initiate** on tree edges).
 - Each node finds its mwoe:
 - Send **test** on potential edges, wait for **accept** (different component) or **reject** (same component).
 - Test edges one at a time in order of weight.
 - Report to leader (convergecast **report**); remember direction of best edge.
 - Leader picks MWOE for fragment.
 - Send **change-root** to MWOE’s endpoint, using remembered best edges.
 - Send **connect** across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Wait sufficient time for phase to end.
Synchronous algorithm

• **Complexity is good:**
 – Messages: $O(n \log n + |E|)$
 – Time (rounds): $O(n \log n)$

• Low message complexity depends on the way nodes test their incident edges, in order of weight, not retesting same edge once it’s rejected.

• **Q:** How to run this algorithm asynchronously?
Running the algorithm asynchronously

• **Problems arise:**
 - Inaccurate information about outgoing edges:
 - In synchronous algorithm, when a node tests its edges, it knows that its neighbors are already up to the same level, and have up-to-date information about their component.
 - In asynchronous version, neighbors could lag behind; they might be in same component but not yet know this.
 - Less “balanced” combination of components:
 - In synchronous algorithm, level k components have $\geq 2^k$ nodes, and level k+1 components are constructed from at least two level k components.
 - In asynchronous version, components at different levels could be combined.
 - Can lead to more messages overall.

 - **Example:** One component could keep merging with level 0 single-node components. After each merge, the number of messages sent in the tree is proportional to the component’s size. Leads to $\Omega(n^2)$ messages overall.
Running the algorithm asynchronously

- Problems arise:
 - Inaccurate information about outgoing edges.
 - Less “balanced” combination of components:
 - Concurrent overlapping searches/convergecasts:
 - When nodes are out of synch, concurrent searches for MWOEcs could interfere with each other (we’ll see this).
 - Time bound:
 - These problems result from nodes being out-of-synch, at different levels.
 - We could try to synchronize levels, but this must be done carefully, so as not to hurt the time complexity too much.
GHS algorithm

- Same basic ideas as before:
 - Form components, combine along MWOEs.
 - Within any component, processes cooperate to find component MWOE.
 - Broadcast from leader, convergecast, etc.

- **Introduce synchronization** to prevent nodes from getting too far ahead of their neighbors.
 - Associate a “level” with each component, as before.
 - Number of nodes in a level k component $\geq 2^k$.
 - Now, each level $k+1$ component will be (initially) formed from exactly two level k components.
 - Level numbers are used for synchronization, and in determining who is in the same component.

- Complexity:
 - **Messages**: $O(|E| + n \log n)$
 - **Time**: $O(n \log n (d + l))$
GHS algorithm

- Combine pairs of components in two ways, merging and absorbing.
- Merging:
 - C and C' have same level k, and have a common MWOE.
 - Result is a new merged component C'', with level $k+1$.

![Diagram showing GHS algorithm](image)
GHS algorithm

- **Absorbing:**
 - $\text{level}(C) < \text{level}(C')$, and C's MWOE leads to C'.
 - Result is to absorb C into C'.
 - Not creating a new component---just adding C to existing C'.
 - C “catches up” with the more advanced C'.
 - Absorbing is cheap, local.

- Merging and absorbing ensure that the number of nodes in any level k component $\geq 2^k$.
- Merging and absorbing are both allowable operations in finding MST, because they are allowed by the general theory for MSTs.
Liveness

• **Q:** Why are merging and absorbing sufficient to ensure that the construction is eventually completed?

• **Lemma:** After any allowable finite sequence of merges and absorbs, either the forest consists of one tree (so we’re done), or some merge or absorb is enabled.

• **Proof:**
 – Consider the current “component digraph”:
 – Nodes = components
 – Directed edges correspond to MWOEs
 – Then there must be some pair C, C’ whose MWOEs point to each other. (Why?)
 – These MWOEs must be the same edge. (Why?)
 – Can combine, using either merge or absorb:
 • If same level, merge, else absorb.

• So, merging and absorbing are enough.
• Now, how to implement them with a distributed algorithm?
Component names and leaders

• For every component with level ≥ 1, define the core edge of the component’s tree.

• Defined in terms of the merge and absorb operations used to construct the component:
 – After merge: Use the common MWOE.
 – After absorb: Keep the old core edge of the higher-level component.

• “The edge along which the most recent merge occurred.”

• Component name: (core, level)
• Leader: Endpoint of core edge with higher id.
Determining if an edge is outgoing

- Suppose i wants to know if the edge (i,j) is outgoing from i’s current component.
- At that point, i’s component name info is up-to-date:
 - Component is in “search mode”.
 - i has received initiate message from the leader, which carried component name.
- So i sends j a test message.
- Three cases:
 - If j’s current (core, level) is the same as i’s, then j knows that j is in the same component as i.
 - If j’s (core, level) is different from i’s and j’s level is \geq i’s, then j knows that j is in a different component from i.
 - Component has only one core per level.
 - No one in the same component currently has a higher level than i does, since the component is still searching for its MWOE.
 - If j’s level is $<$ i’s, then j doesn’t know if it is in the same or a different component. So it doesn’t yet respond---waits to catch up to i’s level.
Liveness, again

- **Q:** Can the extra delays imposed here affect the progress argument?
 - **No:**
 - We can redo the progress argument, this time considering only those components with the lowest current level k.
 - All processes in these components must succeed in determining their mwoes, so these components succeed in determining the component MWOE.
 - If any of these level k components’ MWOE s leads to a higher level, can absorb.
 - If not then all lead to other level k components, so as before, we must have two components that point to each other; so can merge.
Interference among concurrent MWOE searches

- Suppose C gets absorbed into C′ via an edge from i to j, while C′ is working on determining its MWOE.

 Two cases:
 - j has not yet reported its local mwoe when the absorb occurs.
 - Then it’s not too late to include C in the search for the MWOE of C′. So j forwards the initiate message into C.
 - j has already reported its local mwoe.
 - Then it’s too late to include C in the search.
 - But it doesn’t matter: the MWOE for the combined component can’t be outgoing from a node in C anyhow!
Interference among concurrent MWOE searches

• Suppose j has already reported its local mwoe.
• Show that the MWOE for the combined component can’t be outgoing from a node in C.

• **Claim 1:** Reported mwoe(j) cannot be the edge \((j,i)\).
• **Proof:**
 – Since mwoe(j) has already been reported, it must lead to a node with level \(\geq\) level(C’).
 – But the level of i is still < level(C’), when the absorb occurs.
 – So mwoe(j) is a different edge, one whose weight < weight(i,j).

• **Claim 2:** MWOE for combined component is not outgoing from a node in C.
• **Proof:**
 – (i,j) is the MWOE of C, so there are no edges outgoing from C with weight < weight(i,j).
 – So no edges outgoing from C with weight < already-reported mwoe(j).
 – So MWOE of combined component isn’t outgoing from C.
A few details

- **Specific messages:**
 - **initiate:** Broadcast from leader to find MWOE; piggybacks component name.
 - **report:** Convergecast MWOE responses back to leader.
 - **test:** Asks whether an edge is outgoing from the component.
 - **accept/reject:** Answers.
 - **changement:** Sent from leader to endpoint of MWOE.
 - **connect:** Sent across the MWOE, to connect components.
 - We say **merge** occurs when connect message has been sent both ways on the edge (2 nodes must have same level).
 - We say **absorb** occurs when connect message has been sent on the edge from a lower-level to a higher-level node.
Test-Accept-Reject Protocol

- **Bookkeeping:** Each process i keeps a list of incident edges in order of weight, classified as:
 - branch (in the MST),
 - rejected (leads to same component), or
 - unknown (not yet classified).

- Process i tests only unknown edges, sequentially in order of weight:
 - Sends test message, with (core, level); recipient j compares.
 - If same (core, level), j sends reject (same component), and i reclassifies edge as rejected.
 - If (core, level) pairs are unequal and $\text{level}(j) \geq \text{level}(i)$ then j sends accept (different component). i does not reclassify the edge.
 - If $\text{level}(j) < \text{level}(i)$ then j delays responding, until $\text{level}(j) \geq \text{level}(i)$.

- Retesting is possible, for accepted edges.
- Reclassify edge as branch as a result of changerooot message.
Complexity

- As for synchronous version.
- **Messages:** $O(|E| + n \log n)$
 - $4|E|$ for test-reject msgs (one pair for each direction of every edge)
 - n initiate messages per level (broadcast: only sent on tree edges)
 - n report messages per level (convergecast)
 - $2n$ test-accept messages per level (one pair per node)
 - n change-root/connect messages per level (core to MWOE path)
- $\log n$ levels
- **Total:** $4|E| + 5n \log n$
- **Time:** $O(n \log n (l + d))$
Proving Correctness

- GHS MST is hard to prove, because it’s complex.
- GHS paper includes informal arguments.
 - Pretty convincing, but not formal.
 - Also simulated the algorithm extensively.
- Many successful attempts to formalize, all complicated
 - Many invariants because many variables and actions.
 - Some use simulation relations.
 - Recent proof by Moses and Shimony.
Minimum spanning tree

- Application to leader election:
 - Convergecast from leaves until messages meet at node or edge.
 - Works with any spanning tree, not just MST.
 - E.g., in asynchronous ring, this yields $O(n \log n)$ messages for leader election.

- Lower bounds on message complexity:
 - $\Omega(n \log n)$, from leader election lower bound and the reduction above.
Next time

- Synchronizers
- Reading: Chapter 16