6.852: Distributed Algorithms
Fall, 2009

Class 14
Today’s plan

• Mutual exclusion with read/write memory:
 – Lamport’s Bakery Algorithm
 – Burns' algorithm
 – Lower bound on the number of registers
• Mutual exclusion with read-modify-write operations
• Reading: Sections 10.6-10.8, 10.9

• Next: Lecture by Victor Luchangco (Sun)
 – Practical mutual exclusion algorithms
 – Generalized resource allocation and exclusion problems
 – Reading:
 • Herlihy, Shavit book, Chapter 7
 • Mellor-Crummey and Scott paper (Dijkstra prize winner)
 • (Optional) Magnussen, Landin, Hagersten paper
 • Distributed Algorithms, Chapter 11
Last time

- Mutual exclusion with read/write memory:
 - Dijkstra’s algorithm:
 - Mutual exclusion + progress
 - Peterson’s algorithms
 - Mutual exclusion + progress + lockout-freedom
 - Lamport’s Bakery algorithm (didn’t get to this)
 - Mutual exclusion + progress + lockout-freedom
 - No multi-writer variables.
Lamport’s Bakery Algorithm

- Like taking tickets in a bakery.
- Nice features:
 - Uses only single-writer, multi-reader registers.
 - Extends to even weaker registers, in which operations have durations, and a read that overlaps a write receives an arbitrary response.
 - Guarantees lockout-freedom, in fact, almost-FIFO behavior.
- But:
 - Registers are unbounded size.
 - Algorithm can be simulated using bounded registers, but not easily (uses bounded concurrent timestamps).

- Shared variables:
 - For each process i:
 - choosing(i), a Boolean, written by i, read by all, initially 0
 - number(i), a natural number, written by i, read by all, initially 0
Bakery Algorithm

• First part, up to choosing(i) := 0 (the “Doorway”, D):
 – Process i chooses a number greater than all the numbers it reads for the other processes; writes this in number(i).
 – While doing this, keeps choosing(i) = 1.
 – Two processes could choose the same number (unlike real bakery).
 – Break ties with process ids.

• Second part:
 – Wait to see that no others are choosing, and no one else has a smaller number.
 – That is, wait to see that your ticket is the smallest.
 – Never go back to the beginning of this part---just proceed step by step, waiting when necessary.
Shared variables:
for every $i \in \{1,\ldots,n\}$:
- $\text{choosing}(i) \in \{0,1\}$, initially 0, writable by i, readable by all $j \neq i$
- $\text{number}(i)$, a natural number, initially 0, writable by i, readable by $j \neq i$.

\begin{align*}
\text{try}_i \\
\text{choosing}(i) &:= 1 \\
\text{number}(i) &:= 1 + \max_{j \neq i} \text{number}(j) \\
\text{choosing}(i) &:= 0 \\
\text{for } j \neq i \text{ do} \\
\quad \text{waitFor } \text{choosing}(j) &= 0 \\
\quad \text{waitFor } \text{number}(j) &= 0 \text{ or } (\text{number}(i), i) < (\text{number}(j), j) \\
\text{crit}_i \\
\text{exit}_i \\
\text{number}(i) &:= 0 \\
\text{rem}_i
\end{align*}
Correctness: Mutual exclusion

• **Key invariant:** If process \(i \) is in \(C \), and process \(j \neq i \) is in \((T - D) \cup C \),

 Trying region after doorway, or critical region

 then \((\text{number}(i), i) < (\text{number}(j), j) \).

• **Proof:**
 – Could prove by induction.
 – Instead, give argument based on events in executions.
 – This argument extends to weaker registers, with concurrent accesses.
Correctness: Mutual exclusion

• **Invariant:** If i is in C, and $j \neq i$ is in $(T - D) \cup C$, then $(\text{number}(i), i) < (\text{number}(j), j)$.

• **Proof:**
 – Consider a point where i is in C and $j \neq i$ is in $(T - D) \cup C$.
 – Then before i entered C, it must have read $\text{choosing}(j) = 0$, event π.

 π: i reads $\text{choosing}(j) = 0$
 i in C, j in $(T - D) \cup C$

 – **Case 1:** j sets $\text{choosing}(j) := 1$ (starts choosing) after π.
 • Then $\text{number}(i)$ is set before j starts choosing.
 • So j sees the “correct” $\text{number}(i)$ and chooses something bigger.

 – **Case 2:** j sets $\text{choosing}(j) := 0$ (finishes choosing) before π.
 • Then when i reads $\text{number}(j)$ in its second waitfor loop, it gets the “correct” $\text{number}(j)$.
 • Since i decides to enter C anyway, it must have seen $(\text{number}(i), i) < (\text{number}(j), j)$.
Correctness: Mutual exclusion

- **Invariant:** If i is in C, and $j \neq i$ is in $(T - D) \cup C$, then $(\text{number}(i),i) < (\text{number}(j),j)$.

- **Proof of mutual exclusion:**
 - Apply invariant both ways.
 - Contradictory requirements.
Liveness Conditions

• Progress:
 – By contradiction.
 – If not, eventually region changes stop, leaving everyone in T or R, and at least one process in T.
 – Everyone in T eventually finishes choosing.
 – Then nothing blocks the smallest (number, index) process from entering C.

• Lockout-freedom:
 – Consider any i that enters T
 – Eventually it finishes the doorway.
 – Thereafter, any newly-entering process picks a bigger number.
 – Progress implies that processes continue to enter C, as long as i is still in T.
 – In fact, this must happen infinitely many times!
 – But those with bigger numbers can’t get past i, contradiction.
FIFO Condition

- Not really FIFO (→T vs. →C), but almost:
 - FIFO after the doorway: if j leaves D before i →T, then j →C before i →C.
- But the “doorway” is an artifact of this algorithm, so this isn’t a meaningful way to evaluate the algorithm!
- Maybe say “there exists a doorway such that”…
- But then we could take D to be the entire trying region, making the property trivial.
- To make the property nontrivial:
 - Require D to be “wait-free”: a process is guaranteed to complete D it if it keeps taking steps, regardless of what other processes do.
 - D in the Bakery Algorithm is wait-free.
- The algorithm is FIFO after a wait-free doorway.
Impact of Bakery Algorithm

• Originated important ideas:
 – Wait-freedom
 • Fundamental notion for theory of fault-tolerant asynchronous distributed algorithms.
 – Weakly coherent memories
 • Beginning of formal study: definitions, and some algorithmic strategies for coping with them.
Space and memory considerations

- All mutual exclusion algorithms use more than n variables.
 - Bakery algorithm could use just n variables. (Why?)
- All but Bakery use multi-writer variables.
 - These can be expensive to implement
- Bakery uses infinite-size variables
 - Difficult (but possible) to adapt to use finite-size variables.
- Q: Can we do better?
Burns’ Algorithm
Burns' algorithm

- Uses just n single-writer Boolean read/write variables.
- Simple.
- Guarantees safety (mutual exclusion) and progress.
 - But not lockout-freedom!
Shared variables:
 for every $i \in \{1, \ldots, n\}$:
 \[\text{flag}(i) \in \{0,1\}, \text{initially 0, writable by } i, \text{readable by all } j \neq i \]

Process i:

\begin{align*}
\text{try}_i & \quad \text{exit}_i \\
\text{L}: & \quad \text{flag}(i) := 0 \\
& \quad \text{for } j \in \{1, \ldots, i-1\} \text{ do} \\
& \quad \quad \text{if } \text{flag}(j) = 1 \text{ then go to L} \\
& \quad \quad \text{flag}(i) := 1 \\
& \quad \quad \text{for } j \in \{1, \ldots, i-1\} \text{ do} \\
& \quad \quad \quad \text{if } \text{flag}(j) = 1 \text{ then go to L} \\
\text{rem}_i & \quad \text{crit}_i \\
\text{M:} & \quad \text{for } j \in \{i+1, \ldots, n\} \text{ do} \\
& \quad \quad \text{if } \text{flag}(j) = 1 \text{ then go to M} \\
\end{align*}
That is,…

• Each process goes through 3 loops, sequentially:
 1. Check flags of processes with smaller indices.
 2. Check flags of processes with smaller indices.
 3. Check flags of processes with larger indices.
• If it passes all tests, → C.
• Otherwise, drops back:
Correctness of Burns’ algorithm

• Mutual exclusion + progress

• Mutual exclusion:
 – Like the proof for Dijkstra’s algorithm, but now with flags set to 1 rather than 2.
 – If processes i and j are ever in C simultaneously, both must have set their flags := 1.
 – Assume WLOG that process i sets flag(i) := 1 (for the last time) first.
 – Keeps flag(i) = 1 until process i leaves C.
 – After flag(i) := 1, must have flag(j) := 1, then j must see flag(i) = 0, before j → C.
 – Impossible!
Progress for Burns’ algorithm

- Consider fair execution α (each process keeps taking steps).
- Assume for contradiction that, after some point in α, some process is in T, no one is in C, and no one \rightarrow C later.
- WLOG, we can assume that every process is in T or R, and no region changes occur after that point in α.
- Call the processes in T the **contenders**.
- Divide the contenders into two sets:
 - P, the contenders that reach label M, and
 - Q, the contenders that never reach M.
- After some point in α, all contenders in P have reached M; they never drop back thereafter to before M.

\[\begin{array}{c|c}
\alpha \\
\hline
\alpha': \text{ All processes in T or R; someone in T; no region changes, all processes in P in final loop.} \\
\end{array} \]
Progress for Burns’ algorithm

- P, the contenders that reach label M, and
- Q, the contenders that never reach M.

\[\alpha \]

\[\alpha' : \text{All processes in T or R; someone in T; no region changes, all processes in P in final loop.} \]

- Claim P contains at least one process:
 - Process with the lowest index among all the contenders is not blocked from reaching M.
- Let \(i \) = largest index of a process in P.
- Claim process \(i \) eventually \(\rightarrow C \): All others with larger indices eventually see a smaller-index contender and drop back to L, setting their flags := 0 (and these stay = 0).
- So \(i \) eventually sees all these = 0 and \(\rightarrow C \).
- Contradiction.
Lower Bound on the Number of Registers
Lower Bound on the Number of Registers

• All the mutual exclusion algorithms we’ve studied:
 – Use read/write shared memory, and
 – Use at least \(n \) read/write shared variables.

• That’s one variable per potential contender.

• \textbf{Q:} Can we use fewer than \(n \) r/w shared variables?

• Not single-writer. (Why?)

• Not even multi-writer!
Lower bound on number of registers

• Lower bound of n holds even if:
 – We require only mutual exclusion + progress (no stronger liveness properties).
 – The variables can be any size.
 – Variables can be read and written by all processes.

• Start with basic facts about any mutex algorithm A using r/w shared variables.

• Lemma 1: If s is a reachable, idle system state (meaning all processes are in R), and if process i runs alone from s, then eventually i → C.

• Proof: By the progress requirement.

• Corollary: If i runs alone from a system state s’ that is indistinguishable from s by i, s’ ~i s, then eventually i → C.

• Indistinguishable: Same state of i and same shared variable values.
Lemma 2: Suppose that \(s \) is a reachable system state in which \(i \in R \). Suppose process \(i \rightarrow C \) on its own, from \(s \). Then along the way, process \(i \) writes to some shared variable.

Proof:

- By contradiction; suppose it doesn’t.
- Then:
 - \(\alpha: \) \(i \) runs alone, no writes
 - \(s, i \) in \(R \)
 - \(s', i \) in \(C \)

- Then \(s' \sim_j s \) for every \(j \neq i \).
- Then there is some execution fragment from \(s \) in which process \(i \) takes no steps, and in which some other process \(j \rightarrow C \).
 - By repeated use of the progress requirement.

\[\alpha: \text{i runs alone, no writes}\]

\[s, i \text{ in } R \]

\[\text{no } i \]

\[j \text{ in } C\]

\[s', i \text{ in } C\]
Lower bound on registers

• **Lemma 2:** Suppose that s is a reachable system state in which $i \in R$. Suppose process $i \rightarrow C$ on its own, from s. Then along the way, process i writes to some shared variable.

• **Proof, cont’d:**
 - There is some execution fragment from s in which process i takes no steps, and in which some other process $j \rightarrow C$.

 \[\alpha: \text{i runs alone, no writes} \]

 \[s, i \text{ in } R \hspace{2cm} s', i \text{ in } C \]

 \[\text{no i} \hspace{2cm} \text{no i} \]

 \[j \text{ in } C \]

 \[i,j \text{ in } C \]

 - Then there is also such a fragment from s'.
 - Yields a counterexample execution:
 - System gets to s, then i alone takes it to s', then others get j in C.
 - Contradiction because i,j are in C at the same time.
Lower bound on registers

• Back to showing $\geq n$ shared variables needed…

• Special case: 2 processes and 1 variable:
 – Suppose A is a 2-processes mutex algorithm using 1 r/w shared variable x.
 – Start in initial (idle) state s.
 – Run process 1 alone, $\rightarrow C$, writes x on the way.
 • By Lemmas 1 and 2.
 – Consider the point where process 1 is just about to write x, i.e., covers x, for the first time.
 – Note that $s' \sim^2 s$, because 1 doesn’t write between s and s'.
 – So process 2 can reach C on its own from s'.
 • By Corollary to Lemma 1.
2 processes, 1 variable

- Process 2 can reach C on its own from s’:
 - Counterexample execution:
 - Run 1 until it covers x, then let 2 reach C.
 - Then resume 1, letting it write x and then → C.
 - When it writes x, it overwrites anything 2 might have written there on its way to C; so 1 never sees any evidence of 2.
Another special case: 3 processes, 2 variables

- Processes 1, 2, 3; variables x,y.
- Similar construction, with a couple of twists.
- Start in initial (idle) state s.
- Run processes 1 and 2 until:
 - Each covers one of x,y---both variables covered.
 - Resulting state is indistinguishable by 3 from a reachable idle state.
- Q: How to do this?
 - For now, assume we can.
- Then run 3 alone, → C.
- Then let 1 and 2 take one step each, overwriting both variables, and obliterating all traces of 3.
- Continue running 1 and 2; they run as if 3 were still in R.
- By progress requirement, one eventually → C.
- Contradicts mutual exclusion.
3 processes, 2 variables

• It remains to show how to maneuver 1 and 2 so that:
 – Each covers one of x, y.
 – Resulting state is indistinguishable by 3 from a reachable idle state.

• First try:
 – Run 1 alone until it first covers a shared variable, say x.
 – Then run 2 alone until → C.
 – Claim: Alone the way, it must write the other shared variable y.
 • If not, then after 2 → C, 1 could take one step, overwriting anything 2 wrote to x, and thus obliterating all traces of 2.
 • Then 1 continues → C, violating mutual exclusion.
 – Stop 2 just when it first covers y; then 1 and 2 cover x and y.
3 processes, 2 variables

- Maneuver 1 and 2 so that:
 - Each covers one of x,y.
 - Resulting state is indistinguishable by 3 from a reachable idle state.

- But this is not quite right… resulting state might not be indistinguishable by 3 from an idle state.
- 2 could have written x before writing y.
3 processes, 2 variables

- Maneuver 1 and 2 so that:
 - Each covers one of x, y.
 - Resulting state is indistinguishable by 3 from a reachable idle state.
- Second (successful) try:
 - Run 1 alone until it first covers a shared variable.
 - Continue running 1, through C, E, R, back in T, until it again first covers a variable.
 - And once again.

- In two of the three covering states, 1 must cover the same variable.
- E.g., suppose in first two states, 1 covers x (other cases analogous).
3 processes, 2 variables

- **Counterexample execution:**
 - Run 1 until it covers x the first time.
 - Then run 2 until it first covers y (must do so).
 - Then let 1 write x and continue until it covers x again.
 - Now both variables are (again) covered.
 - This time, the final state is indistinguishable by 3 from an idle state.
 - As needed.
General case:
n processes, n-1 variables

- Extends 3-process 2-variable case, using induction.
- Need strengthened version of Lemma 2:
 - **Lemma 2’**: Suppose that \(s \) is a reachable system state in which \(i \in R \). Suppose process \(i \rightarrow C \) on its own, from \(s \). Then along the way, process \(i \) writes to some shared variable that is not covered (in \(s \)) by any other process.
- **Proof**:
 - Similar to Lemma 2.
 - Contradictory execution fragment begins by overwriting all the covered variables, obliterating any evidence of \(i \).
n processes, n-1 variables

• Definition: s' is k-reachable from s if there is an execution fragment from s to s' involving only steps by processes 1 to k.
n processes, n-1 variables

- Now suppose (for contradiction) that A solves mutual exclusion for n processes, with n-1 shared variables.
- **Main Lemma:** For any \(k \in \{1,\ldots,n-1\} \) and from any idle state, there is a \(k \)-reachable state in which processes 1,\ldots,\(k \) cover \(k \) distinct shared variables, and that is indistinguishable by processes \(k+1,\ldots,n \) from some \(k \)-reachable idle state.
- **Proof:** In a minute…
- Now assume we have this, for \(k = n-1 \).
- Then run n alone, \(\rightarrow C \).
 - Can do this, by Corollary to Lemma 1.
- Along the way, it must write some variable that isn’t covered by 1,\ldots,n-1.
 - By Lemma 2′.
- But all n-1 variables are covered, contradiction.

- It remains to prove the Main Lemma…
Proof of the Main Lemma

- **Main Lemma:** For any $k \in \{1, \ldots, n-1\}$ and from any idle state, there is a k-reachable state in which processes 1 to k cover k distinct shared variables, and that is indistinguishable by processes $k+1$ to n from some k-reachable idle state.

- **Proof:** Induction on k.
 - **Base case (k=1):**
 - Run process 1 alone until just before it first writes a shared variable.
 - 1-reachable state, process 1 covers a shared variable, indistinguishable by the other processes from initial state.
 - **Inductive step (Assume for $k \leq n-2$, show for $k+1$):**
 - By inductive hypothesis, get a k-reachable state t_i in which processes $1, \ldots, k$ cover k variables, and that is indistinguishable by processes $k+1, \ldots, n$ from some k-reachable idle state.
Proof of the Main Lemma

Main Lemma: For any \(k \in \{1, \ldots, n-1\} \) and from any idle state, there is a \(k \)-reachable state in which processes 1 to \(k \) cover \(k \) distinct shared variables, and that is indistinguishable by processes \(k+1 \) to \(n \) from some \(k \)-reachable idle state.

Proof: Inductive step (Assume for \(k \leq n-2 \), show for \(k+1 \)):

- By I.H., get a \(k \)-reachable state \(t_1 \) in which 1,\(\ldots, k \) cover \(k \) variables, and that is indistinguishable by \(k+1, \ldots, n \) from some \(k \)-reachable idle state.
- Let each of 1,\(\ldots, k \) take one step, overwriting covered variables.
- Run 1,\(\ldots, k \) until all are back in R; resulting state is idle.
- By I.H. get another \(k \)-reachable state \(t_2 \) in which 1,\(\ldots, k \) cover \(k \) variables, and that is indistinguishable by \(k+1, \ldots, n \) from some \(k \)-reachable idle state.
- Repeat, getting \(t_3, t_4, \ldots \), until we get \(t_i \) and \(t_j \) (\(i < j \)) that cover the same set \(X \) of variables. (Why is this guaranteed to happen?)
- Run \(k+1 \) alone from \(t_i \) until it first covers a variable not in \(X \).
- Then run 1,\(\ldots, k \) as if from \(t_i \) to \(t_j \) (they can't tell the difference).
- Now processes 1,\(\ldots, k+1 \) cover \(k+1 \) different variables.
- And result is indistinguishable by \(k+2, \ldots, n \) from an idle state.
Bell Labs research failure:

- At Bell Labs (many years ago), Gadi Taubenfeld found out that the Unix group was trying to develop an asynchronous mutual exclusion algorithm for many processes that used only a few read/write shared registers.
- He told them it was impossible.
Discussion

New research direction:

- Develop “space-adaptive” algorithms that potentially use many variables, but are guaranteed to use only a few if only a few processes are contending.
- Also “time-adaptive” algorithms.
- See work by [Moir, Anderson], [Attiya, Friedman]
- Time-adaptive and space-adaptive algorithms often yield better performance, lower overhead, in practice.
Mutual Exclusion with Read-Modify-Write Shared Variables
Mutual exclusion with RMW shared variables

- **Stronger memory primitives (synchronization primitives):**
 - Test-and-set, fetch-and-increment, swap, compare-and-swap, load-linked/store-conditional,…

- All modern computer architectures provide one or more of these, in addition to read/write registers.
- Generally support reads and writes, as well as more powerful operations.
- More expensive (cost of hardware, time to access) than variables supporting just reads and writes.
- Not all the same strength; we’ll come back to this later.

Q: Do such stronger memory primitives enable better algorithms, e.g., for mutual exclusion?
Mutual exclusion with RMW: Test-and-set algorithm

- **test-and-set** operation: Sets value to 1, returns previous value.
 - Usually for binary variables.
- **Test-and-set mutual exclusion algorithm (trivial):**
 - One shared binary variable \(x \), 0 when no one has been granted the resource (initial state), 1 when someone has.
 - **Trying protocol**: Repeatedly test-and-set \(x \) until get 0.
 - **Exit protocol**: Set \(x := 0 \).

\[
\begin{align*}
\text{try}_i & : & \text{waitfor}(\text{test-and-set}(x) = 0) & \text{exit}_i \\
\text{crit}_i & : & x := 0 & \text{rem}_i
\end{align*}
\]

- Guarantees mutual exclusion + progress.
- No fairness. To get fairness, we can use a more expensive queue-based algorithm:
Mutual exclusion with RMW: Queue-based algorithm

- **queue** shared variable
 - Supports enqueue, dequeue, head operations.
 - Can be quite large!
- **Queue mutual exclusion algorithm:**
 - One shared variable Q: FIFO queue.
 - **Trying protocol:** Add self to Q, wait until you're at the head.
 - **Exit protocol:** Remove self from Q.

\[
\begin{align*}
\text{try}_i & \quad \text{enqueue}(Q, i) \quad \text{exit}_i \\
& \quad \text{waitfor}(\text{head}(Q) = i) \quad \text{dequeue}(Q) \\
& \quad \text{crit}_i \quad \text{rem}_i
\end{align*}
\]

- **Fairness:** Guarantees bounded bypass (indeed, no bypass = 1-bounded bypass).
Mutual exclusion with RMW: Ticket-based algorithm

- Modular fetch-and-increment operation, $f\&i_n$
 - Variable values are integers mod n.
 - Increments variable mod n, returns the previous value.

- Ticket mutual exclusion algorithm:
 - Like Bakery algorithm: Take a number, wait till it's your turn.
 - Guarantees bounded bypass (no bypass).
 - Shared variables: $\text{next}, \text{granted}$: integers mod n, initially 0
 - Support modular fetch-and-increment.
 - Trying protocol: Increment next, wait till granted.
 - Exit protocol: Increment granted.

\[
\begin{align*}
\text{try}_i & \\
\text{ticket} & := f\&i_n(\text{next}) \\
\text{waitFor}(\text{granted} = \text{ticket}) & \\
\text{crit}_i & \\
\text{exit}_i & \\
\text{f}\&i_n(\text{granted}) & \\
\text{rem}_i &
\end{align*}
\]
Ticket-based algorithm

- **Space complexity:**
 - Each shared variable takes on at most n values.
 - Total number of variable values: n^2
 - Total size of variables in bits: $2 \log n$

- **Compare with queue:**
 - Total number of variable values:

 $n! + (n \text{ choose } (n-1)) (n-1)! + (n \text{ ch } (n-2)) (n-2)! + \ldots + (n \text{ ch } 1) 1!$
 $= n! (1 + 1/1! + 1/2! + 1/3! + \ldots + 1/(n-1)!)$
 $\leq n! e = O(n^n)$
 - Size of variable in bits: $O(n \log n)$

\[
\begin{align*}
\text{try}_i \\
\text{ticket} & := f&i_n(\text{next}) \\
\text{waitfor}(\text{granted} = \text{ticket}) \\
\text{crit}_i
\end{align*}
\]

\[
\begin{align*}
\text{exit}_i \\
\text{f&i}_n(\text{granted}) \\
\text{rem}_i
\end{align*}
\]
Variable Size for Mutual Exclusion with RMW

- **Q:** How small could we make the RMW variable?
- 1 bit, for just mutual exclusion + progress (simple test and set algorithm).
- With fairness guarantees?
- \(O(n)\) values (\(O(\log n)\) bits) for bounded bypass.
 - Can get \(n+k\) values, for small \(k\).

In practice, on a real shared-memory multiprocessor, we want a few variables of size \(O(\log n)\).
So ticket algorithm is pretty good (in terms of space).

- **Theoretical lower bounds:**
 - \(\Omega(n)\) values needed for bounded bypass, \(\Omega(\sqrt{n})\) for lockout-freedom.
Variable Size for Mutual Exclusion with RMW

- Theoretical lower bound:
 - $\Omega(n)$ values needed for bounded bypass, $\Omega(\sqrt{n})$ for lockout-freedom.

- **Significance:**
 - Achieving mutual exclusion + lockout freedom is not trivial, even though we assume that the processes get fair access to the shared variables.
 - Thus, fair access to the shared variables does not immediately translate into fair access to higher-level critical sections.

- For example, consider bounded bypass:…
Lower bound on variable size for mutual exclusion + bounded bypass

- **Theorem:** In any mutual exclusion algorithm guaranteeing progress and bounded bypass, using a single RMW shared variable, the variable must be able to take on at least \(n \) distinct values.

- Essentially, need enough space to keep a process index, or a counter of the number of active processes, in shared memory.

- **General RMW shared variable:** Allows read, arbitrary computation, and write, all in one step.

- **Proof:** By contradiction.
 - Suppose Algorithm A achieves mutual exclusion + progress + \(k \)-bounded bypass, using one RMW variable with \(< n \) values.
 - Construct a bad execution, which violates \(k \)-bounded bypass:
Lower bound on variable size for mutual exclusion + bounded bypass

- **Theorem:** In any mutual exclusion algorithm guaranteeing progress and bounded bypass, using a single RMW shared variable, the variable must be able to take on at least \(n \) distinct values.

- **Proof:** By contradiction.

 - Suppose Algorithm A achieves mutual exclusion + progress + \(k \)-bounded bypass, using one RMW variable with \(< n\) values.

 - Run process 1 from initial state, until \(\rightarrow C \), execution \(\alpha_1 \):

 \[\alpha_1 \]

 - Run process 2 until it accesses the variable, \(\alpha_2 \):

 \[\alpha_2 \]

 - Continue by running each of 3, 4, \ldots, \(n \), obtaining \(\alpha_3, \alpha_4, \ldots, \alpha_n \).
Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass, using a single RMW shared variable, the variable must be able to take on at least \(n \) distinct values.

Proof, cont’d:
- Since the variable takes on \(< n\) values, there must be two processes, \(i \) and \(j \), \(i < j \), for which \(\alpha_i \) and \(\alpha_j \) leave the variable with the same value \(v \).
- Now extend \(\alpha_i \) so that \(1, \ldots, i \) exit, then \(1 \) reenters repeatedly, \(\rightarrow C \) infinitely many times.
 - Possible since progress is required in a fair execution.
Lower bound on variable size for mutual exclusion + bounded bypass

- **Theorem:** In any mutual exclusion algorithm guaranteeing bounded bypass, using a single RMW shared variable, the variable must be able to take on at least n distinct values.

- **Proof, cont’d:**
 - Now apply the same steps after α_j.
 - Result is an execution in which process $1 \rightarrow C$ infinitely many times, while process j remains in T.
 - Violates bounded bypass.

 ![Diagram showing the execution](

 - Note: The extension of α_j isn’t a fair execution; this is OK since fairness isn’t required to violate bounded bypass.)
Mutual exclusion + lockout-freedom

• Can solve with $O(n)$ values.
 − Actually, can achieve $n/2 + k$, small constant k.

• Lower bound of $\Omega(\sqrt{n})$ values.
 − Actually, about \sqrt{n}.
 − Uses a more complicated version of the construction for the bounded bypass lower bound.
Next time:

- More practical mutual exclusion algorithms
- Reading:
 - Herlihy, Shavit book, Chapter 7
 - Mellor-Crummey and Scott paper (Dijkstra prize winner)
 - (Optional) Magnussen, Landin, Hagersten paper
- Generalized resource allocation and exclusion problems
- Reading:
 - Distributed Algorithms, Chapter 11