Class 17
Today’s plan

• Atomic objects:
 – Basic definitions
 – Canonical atomic objects
 – Atomic objects vs. shared variables

• Reading: Sections 13.1-13.2

• Next time:
 – More atomic objects:
 • Atomic snapshots
 • Atomic read/write registers
 – Reading: Sections 13.3-13.4
Shared memory model

- Single I/O automaton with processes and variables “inside”.
 - Separation expressed by locality restrictions on the actions and transitions.
 - Processes and variables aren’t separate automata.
 - Doesn’t exploit I/O automaton (de)composition.
 - Can’t talk about implementing shared variables with lower-level distributed algorithms.
- **Q:** Could we model each process and variable as a separate I/O automaton?
 - Split operations on variables into separate invocation and response actions.
 - But we still want an invocation/response to “look like” an instantaneous access.

- Define **atomic objects**:
 - Interface has invocation inputs and response outputs.
 - Invocation/response behavior “looks like” that of an instantaneous-access shared variable.
- AKA **linearizable objects** [Herlihy, Wing]
Atomic objects

- Interface has invocation inputs and response outputs.
- Invocation/response behavior “looks like” that of an instantaneous-access shared variable.
- Atomic object of a given type is similar to an ordinary shared variable of that type, but it allows concurrent accesses by different processes.
- Still looks “as if” operations occur one at a time, sequentially, in some order consistent with order of invocations and responses.
- Fault-tolerance conditions, as for consensus:
 - Wait-free termination
 - f-failure termination
- Separating invocations and responses allows us to consider lower-level implementations of these objects.
 - Shared-memory algorithms, or distributed network algorithms.
 - For shared memory algorithms, can develop algorithms hierarchically, using several levels.
- Atomic objects are important building blocks for multiprocessor systems and distributed systems.
Replacing variables with atomic objects

• Now processes and objects are all I/O automata, combined using ordinary automata composition.
• Interactions:
 – Processes access atomic objects via invocations, get responses.
 – Invocations are outputs of processes, inputs of objects.
 – Responses are outputs of objects, inputs of processes.
 – May be a gap between invocation and response.
Replacing variables with atomic objects

- “Locality” is now automatic from I/O automata composition.
- More complicated than shared variables:
 - More actions (invocations/responses instead of entire accesses).
 - Algorithms have more steps, more bookkeeping.
 - More stuff to reason about.
- More realistic system model.
Atomic objects

- Replace variables with atomic objects
 - can decompose system in different ways
 - what a process is depends on your point of view
 - can compose objects into larger objects
- but we need some restrictions to get “equivalence”
- handling failures, in particular, is tricky
 - delay for later in lecture
Atomic objects: Basic definitions
Atomic object definitions

- **Variable type:** \((V, v_0, \text{invs}, \text{resps}, f)\)
 - \(V\): Set of values
 - \(v_0\): Initial value
 - \(\text{invs}\): Set of invocations
 - \(\text{resps}\): Set of responses
 - \(f\): \(\text{invs} \times V \rightarrow \text{resps} \times V\)
 - Describes responses to an invocation and associated changes to the variable.

- **AKA Sequential specification** [Herlihy], State machine [Lamport]

- **Execution:** \(v_0, a_1, b_1, v_1, a_2, b_2, v_2, a_3, b_3, v_3, a_4, b_4, v_4, \ldots\)
 - \(v_i\) is value; \(a_i\) is invocation; \(b_i\) is response
 - Ends with value (if finite).
 - \((b_i, v_i) = f(a_i, v_{i-1})\) for \(i > 0\).

- **Trace:** \(a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4, \ldots\) (i.e., just invocations and responses, but no variable values)
Atomic objects

• Atomic object A of a given type is an I/O automaton with a particular kind of interface, satisfying some conditions:
 – Well-formedness
 – Atomicity
 – Liveness (termination)

• External interface:
 – Assume “ports” 1, 2, ..., n (one for each process).
 – May restrict so that some invocations are allowed on some of the ports, not all.
 – Also allow stop inputs on all ports, as before.

• Compose with users U_i, assumed to preserve well-formedness (alternating invocations and responses at each port, starting with invocation).
Conditions satisfied by A

- **Preserves well-formedness** (alternating invocations and responses at each port, starting with invocation).
- **Atomicity:**
 - First define when a well-formed **sequence** β of invocations and responses (at all ports) is **atomic**.
 - Then **A satisfies atomicity** iff all well-formed executions of $A \times U$, where $U = \prod U_i$ (for any users) have atomic traces.
- First suppose that all invocations have matching responses (that is, the sequence β is **complete**).
- Then we say β is **atomic** provided that it’s possible to insert a **serialization point** (dummy event) somewhere between each invocation and matching response, such that, if all the invs and resps are moved to their serialization points, the result is a trace of the (serial) variable type.
Atomicity for complete sequences

• Suppose β is a complete well-formed sequence of invocations and responses. Then β is atomic provided that one can insert a serialization point between each invocation and matching response, such that, if all the invs and resps are moved to their serialization points, the result is a trace of the (serial) variable type.

• Examples: Initial value 0.

• read, 0, write(8), ack is correct for serial specification.
• write(8), ack, read, 8 is also correct.
Alternative definition [Herlihy]

• Suppose β is a complete well-formed sequence of invocations and responses. Then β is atomic provided that it can be reordered to a trace of the variable type, while preserving:
 – The order of events at each process, and
 – The order of any response and following invocation (anywhere).

• Equivalent.
Complication:
Incomplete operations

- Q: What about sequences β containing some incomplete operations? Which ops should get serialization points?
- We can’t require that we include serialization points for all such operations (operation might fail right after invocation).
- We can’t require that we exclude all such operations (operation might fail just before returning).
- So, we leave it optional…
- Require that it’s possible to:
 - Insert serialization points for all complete operations.
 - Select some subset Φ of incomplete operations (arbitrary).
 - For each operation in Φ, insert a serialization point somewhere after the invocation, and make up a response.
In such a way that moving all matched invs and their resps to the serialization points yields a trace of the variable type.
Suppose β is any well-formed sequence of invocations and responses. Then β is atomic provided that one can

- Insert serialization points for all complete operations.
- Select a subset Φ of incomplete operations.
- For each operation in Φ, insert a serialization point somewhere after the invocation, and make up a response.

In such a way that moving all matched invs and their resps to the serialization points yields a trace of the variable type.
More atomicity examples

- Initial value 0.
 - read, 0 is correct for serial specification.
 - write(8), ack, read, 8 is correct.
Atomic objects

- Define acceptable behavior using trace properties
 - well-formedness (for port i)
 - alternating invocation/response (beginning with invocation) for i
 - whole trace is well-formed if well-formed for every port
 - sequential
 - alternating invocation/response for whole trace
 - trace for the variable type
 - complete
 - every invocation has matching response
 - invocation+matching response = complete operation
 - invocation without matching response = incomplete/pending operation
Another atomicity example

- Initial value 0.

```
read 0  read 0  read 0  read 0
```

- read, 0, read, 0,…(forever) is correct.
- The write does not (cannot) get a serialization point.
Some non-atomic sequences

- **Write not seen:**

 \[
 \begin{array}{c}
 \text{write}(8) \\
 \text{ack} \\
 \text{read} \ 0 \\
 \end{array}
 \]

- **Out-of-order reads**

 \[
 \begin{array}{c}
 \text{read} \ 8 \\
 \text{read} \ 8 \\
 \text{read} \ 0 \\
 \text{read} \ 0 \\
 \end{array}
 \]

 \[
 \text{write}(8)
 \]
Note on the atomicity property

- [Well-formedness + atomicity] is a safety property.
- More precisely, let P be the trace property, for sequences of invocations and responses, expressing:
 - Well-formedness for every port, plus
 - Atomicity.
Then P is a safety property.
- In other words, if this combination doesn’t hold, the violation occurs at some particular point in the sequence.
- Plausible, but not completely obvious---proved in book, p. 405.
 - Uses Konig’s Lemma to show limit-closure.
 - That is, if we can assign serialization points correctly to successively-extended finite sequences, then there is a way to assign them to their infinite limiting sequence.
Back to the conditions satisfied by an atomic object A…

- Preserves well-formedness.
- Atomicity:
 - We just defined when a well-formed sequence β of invocations and responses (at all ports) is atomic.
 - Then A satisfies atomicity iff all well-formed executions of $A \times U$, where $U = \prod U_i$ (for any users) have atomic traces.
- Liveness (termination):
Liveness

• **Failure-free termination** (basic requirement for atomic objects):
 – In any fair failure-free execution of $A \times U$, every invocation has a matching response.
 – “Fair” here refers to fairness in the underlying I/O automata model---A keeps taking steps.

• **Definition**: A is an **atomic object** if it satisfies well-formedness, atomicity, and failure-free termination (for all U).
Other liveness conditions

• As for consensus, we sometimes consider other liveness conditions, expressing fault-tolerance properties.

• **Wait-free termination:** In any fair execution of $A \times U$, every invocation on a non-failing port gets a response.

• **f-failure termination, $0 \leq f \leq n$:** In any fair execution of $A \times U$ in which failures occur on $\leq f$ ports, every invocation on a non-failing port gets a response.
Example: A wait-free atomic object

• Variable type:
 – Natural numbers, initial value 0.
 – read and increment operations.

• Atomic object supports read and increment ops on all ports.

• Implement with an n-process shared-memory system.

• Shared read/write registers
 – $x(i), 1 \leq i \leq n$, natural number, initially 0.
 – $x(i)$ writable by i, readable by all.

• To implement increment$_i$: Process i increments its own variable $x(i)$.
 – Can do this using a write operation, by remembering the previous value written.

• To implement read$_i$: Process i reads all the shared variables, one at a time, in any order, and returns the sum.

• Q: Why does this work?
Read/Increment algorithm

- **increment**: Increment $x(i)$.
- **read**: Read all the shared variables, one at a time, in any order, and return the sum.

Proof:
- **Well-formed, wait-free**: Immediate.
- **Atomic**: Say where to put the serialization points.
 - For **increment**: At the actual write step.
 - For complete **read**:
 - Must be somewhere between invocation and response.
 - Returns a value v such that $v \geq$ the sum of the x’s at the beginning, but $v \leq$ the sum at the end.
 - Since the sum increases by one at a time, there is some point where sum of the x’s = v.
 - Put the serialization point there.
 - For incomplete **read**: Don’t bother.
- **Correctness** depends on restricted form of the operations.
Canonical Atomic Object Automata
Canonical atomic object automaton

- Describe the set of traces acceptable for a wait-free atomic object as the fair traces of a particular canonical object automaton; see Section 13.1.2.
- Could generalize to f-failure termination (see later).
- Canonical object automaton keeps internal copy of the variable, plus delay buffers for invocations and responses.
- Behavior: 3 kinds of steps:
 - Invoke: Invocation arrives, gets put into in-buffer.
 - Perform: Invoked operation gets performed on the internal copy of the variable, response gets put into resp-buffer.
 - Respond: Response returned to user.
- Internal perform step is convenient, even though we’re interested only in specifying external behavior.
- Perform step corresponds to serialization point.
Canonical atomic object automaton

• **Liveness:**
 – One task for each port i.
 – Use the usual I/O automata convention that tasks keep getting turns to take steps.
 – To model the effects of failures, we include a specially dummy$_i$ action in each task i, which gets enabled when stop$_i$ occurs.
Canonical atomic object automaton

• Equivalent to the original specification for a wait-free atomic object, in a precise sense.
• Can be used to prove correctness of algorithms that implement atomic objects, e.g., using simulation relations.
• **Theorem 1:** Every fair trace of the canonical automaton (with well-formed U) satisfies the properties that define a wait-free atomic object.
• **Theorem 2:** Every trace allowed by a wait-free atomic object (with well-formed U) is a fair trace of the canonical automaton.
Canonical atomic object automaton

- An equivalent definition as an automaton C
 - external actions as before
 - internal actions: perform(a,i)
 - state variables:
 - val: V, initially v_0
 - inv_buffer: set of (i,a), initially empty
 - resp_buffer: set of (i,b), initially empty
 - transitions:
 - inv(a,i) adds (i,a) to inv_buffer
 - perform(a,i) removes (i,a) from inv_buffer, applies a to val, and puts (i,b) into resp_buffer, where b is the response from applying a to val
 - resp(b,i) takes (i,b) removes resp_buffer
 - one task for each i
Canonical atomic object automaton

- For C and U as defined previously:
 - $\square \text{traces}(C \times U)$ iff \square is well-formed and atomic
 - $\square \text{fairtraces}(C \times U)$ iff \square is well-formed, atomic and complete

- Proof
 - well-formedness
 - atomicity
 - completeness
 - need to show both directions

- An automaton A is atomic if it implements C.
Atomic Objects vs. Shared Variables
Atomic objects vs. shared vars

• Atomic objects aren’t the same as shared variables.
• But an important basic result says we can substitute atomic objects for shared variables in a shared-memory system, and the resulting system “behaves the same”.
• Enables hierarchical construction of shared-memory systems.

• The substitution:
 – Given \(A \), a shared-memory system, and
 – For each shared variable \(x \) of \(A \), given an atomic object \(B_x \) (same type, interface corresponding to the allowed connections).
 – \(\text{Trans} \) is the composition of I/O automata, one for each process and variable.
Atomic objects vs. shared vars

- Given shared-memory system A, and for each shared variable x of A, given atomic object B_x.
- Trans is the composition of I/O automata, one for each process and variable:
 - For variable x, use atomic object B_x.
 - For process i, use automaton P_i, where:
 - Inputs of P_i are inputs of A on port i, responses of all the B_xs on port i, and stop_i.
 - Outputs of P_i are outputs of A on port i and invocations to all the B_xs on port i.
 - Steps of P_i simulate those of process i of A directly, except when process i of A accesses x, Then P_i invokes the operation on B_x, then blocks, waiting for a response. When response arrives, P_i resumes simulating process i.
Atomic objects vs. shared vars

• A note on failure actions:
 – stop_i is an input both to P_i, and to all objects B_x that P_i is connected to.
What is preserved by this transformation?

• **Theorem:** For any execution \(\alpha\) of \(\text{Trans} \times \text{U}\), there is an execution \(\alpha'\) of \(\text{A} \times \text{U}\) (that is, of the original shared-memory system) such that:
 - \(\alpha \mid \text{U} = \alpha' \mid \text{U}\) (looks the same to the users), and
 - \(\text{stop}_i\) events occur for the same \(i\) in \(\alpha\) and \(\alpha'\) (the same processes fail).

• **Technicality:** Need a little assumption about \(\text{A}\)---that at any point, for each \(i\), either process \(i\) or the user at \(i\) is enabled to do something, but not both.

• **Proof:** Given \(\alpha\), construct \(\alpha'\):
 - Introduce serialization points and responses for operations of \(\text{B}_\times\) in \(\alpha\), as guaranteed by the atomicity definition.
 - Then commute the invocation and responses events with other events until they appear next to their serialization points.
What is preserved?

• **Theorem:** For any execution α of $\text{Trans} \times U$, there is an execution α' of $A \times U$ such that:
 – $\alpha \mid U = \alpha' \mid U$ and
 – stop$_i$ events occur for the same i in α and α'.

• **Proof:** Given α, construct α':
 – Introduce ser. pts. and responses for operations of B_x in α.
 – Commute invocation and responses events with other events until they appear next to their serialization points.
 – OK as far as the B_x's are concerned.
 – What about the P_i's? We aren’t allowed to reorder events of the same P_i.
 – But no such reordering happens, because:
 • P_i blocks when it performs invocations, and
 • No inputs arrive at P_i from U while P_i is waiting for a response to an invocation (by the technical assumption---it’s the system’s turn).
 – Result is still an execution of $\text{Trans} \times U$ (using composition results), but now it’s one with all invocations and responses occurring in consecutive pairs.
 – Now replace the pairs with single access steps.
Liveness

• Construction also preserves liveness:
• Can show that α fair implies α' fair, that is, that a fair execution of $\text{Trans} \times U$ emulates a fair execution of $A \times U$.
• The difficulty: Objects sometimes don’t respond to invocations, whereas shared variable accesses always return. So the objects could introduce new blocking.
• We need an assumption that implies that the objects don’t introduce new blocking.
• E.g., can assume that the B_x objects are wait-free.
• E.g., can assume that at most f failures occur in α and each B_x guarantees f-failure termination.
 – “The failures that happen are tolerated by the objects.”
 – Ensures that the objects always respond to non-failed processes.
Application 1 of Trans results

• Implementing atomic objects using other atomic objects:
 – Suppose A is itself an atomic object implementation, using shared memory.
 – Say A and all the B_x's guarantee f-failure termination.
 – Then Trans also implements an atomic object (of the same type), and guarantees f-failure termination.
Application 2 of Trans results

• Building shared-memory systems hierarchically.
 – Suppose the B_xs are themselves shared-memory systems implementing atomic objects.
 – Then Trans yields a 2-level system:
 – If we compose each P_i at the top level with all the i-port agent processes within the B_x implementations, we get an actual shared-memory system (processes and variables).
Combining the two applications

- Building shared-memory implementations of atomic objects hierarchically.
 - Same as Application 2, but top level system is itself an atomic object implementation, as in Application 1.
 - Shows how to combine shared-memory implementations of atomic objects at two levels to get a single shared-memory implementation of the top-level atomic object.
 - Used implicitly in the research literature.
Algorithms to implement atomic objects
Read-Modify-Write Atomic Object

- Can we implement a general RMW atomic object using just read/write shared variables?
 - Non-fault-tolerant implementation:
 - Use lockout-free mutex algorithm, e.g., one of Peterson’s.
 - Simulate the RMW variable using a read/write register.
 - Access the register only within critical region, using a read followed by a write.
 - Q: Fault-tolerant implementation?
Read-Modify-Write Atomic Object

- Fault-tolerant implementation?
- Say, 1-failure termination.
- **Theorem:** There is no shared memory system using only read/write shared variables that implements a general RMW atomic object and guarantees 1-failure termination.
- **Proof:** By contradiction.
 - Suppose there is, system B.
 - Let A be a RMW-based agreement algorithm that uses 1 shared RMW variable and guarantees 1-failure termination.
 - Earlier, we saw how to guarantee wait-free termination.
 - Substitute B for the RMW shared variables in A.
 - Resulting system solves agreement in read/write model, with 1-failure termination.
 - Contradicts impossibility result for consensus.
Next time:

• More algorithms to implement atomic objects:
 – Atomic snapshots
 – Atomic read/write registers

• Reading: Sections 13.3-13.4