Class 23
Today’s plan

• Shared memory vs. networks
• Consensus in asynchronous networks
• Reading:
 – Chapter 17
• Next time:
 – Self-stabilization
 – [Dolev book], Chapter 2
Shared memory vs. Networks

• Simulating shared memory in distributed networks:
 – Popular method for simplifying distributed programming.
 – Distributed shared memory (DSM).
 – Easy if there are no failures.
 – Possible if $n > 2f$; impossible if $n \leq 2f$.

• Simulating networks using shared memory:
 – Easier, because shared memory is “more powerful”.
 – Works for any number of failures.
 – Useful mainly for lower bounds, impossibility results.
 • Carry over impossibility results for shared memory model to network model
 • E.g., for fault-tolerant consensus.
Paxos

- A fault-tolerant consensus algorithm for distributed networks.
- Can use it to implement a fault-tolerant replicated state machine (RSM) in a distributed network.
- Generalizes Lamport’s timestamp-based non-fault-tolerant RSM algorithm.
Simulating networks using shared-memory systems
Simulating networks using shared-memory systems

- Easy transformation from networks to shared-memory, because shared-memory model is more powerful:
 - Has reliable, instantaneously-accessible shared memory.
 - No arbitrary delays as in channels.
- Transformation preserves fault-tolerance, even for \(f \geq n/2 \).
- Assume:
 - Asynchronous network system \(A \), running on undirected graph network \(G \).
 - Failures: \(\text{stop}_i \) event disables \(P_i \) and has no effect on channels.
- Produce:
 - Asynchronous read/write shared-memory system \(B \) simulating \(A \), in the same sense as for atomic objects:
 - For any execution \(\alpha \) of the shared-memory system \(B \times U \), there is an execution \(\alpha' \) of the network system \(A \times U \) such that:
 - \(\alpha \mid U = \alpha' \mid U \) and
 - \(\text{stop}_i \) events occur for the same \(i \) in \(\alpha \) and \(\alpha' \).
 - If \(\alpha \) is fair then \(\alpha' \) is also fair.
Algorithm

- Replace channel $C_{i,j}$ with a 1-writer, 1-reader shared variable $x(i,j)$, writable by i, readable by j.
- $x(i,j)$ contains a queue of messages, initially empty.
- Process i adds messages, never removes any.

- Process i simulates automaton P_i, step by step.
 - To simulate $send(m)_{i,j}$, process i adds m to end of $x(i,j)$.
 - Does this using a write operation, by remembering what it wrote there earlier.
 - Meanwhile, process i keeps checking its incoming variables $x(j,i)$, looking for new messages.
 - Does this by remembering what it saw there before.
 - When it finds a new message, process i handles it the same way P_i would handle it.
Some pseudocode

- State variables for process i
 - $pstate : states(P_i)$
 - $sent(j)$ for each out-neighbor j: sequence of M, initially empty
 - $rcvd(j), processed(j)$ for each in-neighbor j: seq of M, initially empty

- Transitions for i
 - Internal $send(m,j)_i$:
 - pre: $send(m)_{i,j}$ enabled in $pstate_i$
 - eff: append m to $sent(j)$; $x(i,j) := sent(j)$;
 update $pstate$ as for $send(m)_{i,j}$
 - Internal $receive(m,j)_i$
 - pre: true
 - eff: $rcvd(j) := x(j,i)$;
 update $pstate$ using messages in $rcvd(j) - processed(j)$;
 $processed(j) := rcvd(j)$
 - All others: As for P_i, using $pstate$.
An important corollary

• **Theorem:** This simulation produces an asynchronous shared-memory system B simulating A, in the sense that, for any execution \(\alpha \) of the shared-memory system \(B \times U \), there is an execution \(\alpha' \) of the network system \(A \times U \) such that:
 - \(\alpha \mid U = \alpha' \mid U \).
 - stop\(_i\) events occur for the same \(i \) in \(\alpha \) and \(\alpha' \).
 - If \(\alpha \) is fair then \(\alpha' \) is also fair.

• **Corollary:** Consensus is impossible in asynchronous networks, with 1 stopping failure [Fischer, Lynch, Paterson].

• **Proof:**
 - If such an algorithm existed, we could simulate it in an asynchronous shared-memory system using the simulation just given.
 - This would yield a 1-fault-tolerant consensus algorithm for (1-writer 1-reader) read/write shared memory.
 - We already know this is impossible [Loui, Abu-Amara].
Another corollary

- **Corollary:** Consensus is impossible in asynchronous broadcast systems, with 1 stopping failure [Fischer, Lynch, Paterson].

- **Asynchronous broadcast system:** Process can put a message in all its outgoing channels in one step, and all are guaranteed to eventually be delivered.
 - Process cannot fail in the middle of a broadcast.

- **Proof:**
 - If such an algorithm existed, we could simulate it in an asynchronous shared-memory system using a simple extension of the simulation above.
 - Extension uses **1-writer multi-reader shared variables** to represent the broadcast channels.
 - This would yield a 1-fault-tolerant consensus algorithm for 1-writer multi-reader read/write shared memory.
 - We already know this is impossible [Loui, Abu-Amara].

- **Q:** Is this counterintuitive?
Is this counterintuitive?

- **Corollary:** Consensus is impossible in asynchronous broadcast systems, with 1 stopping failure [Fischer, Lynch, Paterson].

- **Asynchronous broadcast system:** Process can put a message in all its outgoing channels in one step, and all are guaranteed to eventually be delivered.
 - Process cannot fail in the middle of a broadcast.

- Recall in synchronous model, impossibility results for consensus depended heavily on processes failing in the middle of a broadcast.

- Now every broadcast is completed, and guaranteed to be delivered everywhere.

- But we still get impossibility.
Simulating shared-memory systems using networks
Simulating shared-memory in distributed networks

- Popular method for simplifying distributed programming.
- Non-fault-tolerant algorithms:
 - Single-copy
 - Multi-copy
 - Majority voting
- Fault-tolerant algorithms:
 - [Attiya, Bar-Noy, Dolev] algorithm for $n > 2f$.
 - Impossibility result for $n \leq 2f$.
Non-fault-tolerant simulation of shared memory in distributed networks
Shared memory in networks

- Assume shared memory system A:
 - Ports 1,...,n
 - User U_i interacts with process i on port i
 - Technical restriction: For each i, it’s always either the user's turn, or process's turn to take steps (not both).
 - So we can replace shared variables with atomic object implementations without introducing new behavior.

- Design asynchronous network system B:
 - Same ports/user interface.
 - Processes and FIFO reliable channels.
 - For any execution α of the network system B × U, there is an execution α' of the shared memory system A × U such that:
 - α | U = α' | U and
 - stop_i events occur for the same i in α and α'.
 - If α is fair then α' is also fair (will change for FT case).
Single-copy simulation

• Non-fault-tolerant.
• Works for any object type.
• Locate each shared variable x at some known process, $\text{owner}(x)$.
• Handle each shared variable independently.
• Automaton P_i simulates process i of A, step by step.
 – All actions other than shared-memory accesses as before.
 – To access variable x, P_i sends a message to $\text{owner}(x)$ and waits for a response; when response arrives, uses it and resumes the simulation.
 – Meanwhile, P_i handles requests to perform accesses to all variables x for which $i = \text{owner}(x)$.
 • Performs on local copy, in one indivisible step.
 • Sends response.
More formally…

• Each automaton P_i is the composition of:
 – Q_i, an automaton that simulates process i of the shared-memory system A,
 • Use same automata as when replacing shared variables by atomic objects.
 – $R_{x,i}$, for every shared variable x, an automaton that manages variable x and its requests.
More formally…

- Q_i and $R_{x,i}$ interact using invocations and responses on object x.
- For each x, the $R_{x,i}$ automata communicate over FIFO send/receive channels, and cooperate to implement an atomic object for x.
- **Owner(x):** Collects requests via local invocations and messages from others, processes on local copy.
- **Non-owners:** Send invocation to owner(x), await response.
More formally…

- **Correctness**: Pretty obvious, since clearly the $R_{x,i}$ automata (and the channels between them) implement an atomic object for x.
- **Serialization point for each operation**: When the owner performs the operation on the local copy.
- **Fault-tolerance**: None. Any process failure kills its variables, which can block everyone.
Some issues

• Optimization: Avoid busy-waiting on a remote shared variable: Send one request, let owner notify sender when the value of the variable changes, or when some condition on this value becomes true.

• Q: Where to put the copies?
Multi-copy simulation

- Still not fault-tolerant.
- Just for read/write objects.
- Locate each shared variable x at some known collection of processes, $\text{owners}(x)$.
- Handle each shared variable independently.
- How P_i accesses variable x:
 - \text{READ}: Read any copy.
 - \text{WRITE}: Write all copies, asynchronously, in any order.
 - “Read-one, write-all.”
- Can be faster than single-copy, on average, if reading is much more common than writing.
 - E.g., in peer-to-peer systems, sharing files.
- But, without some constraints, we get coherence issues…
Multi-copy simulation: Bad examples

- **Example 1:** Multi-writer, inconsistent order of WRITEs
 - P_1 and P_2 want to WRITE the same shared variable x.
 - $\text{owners}(x) = \{P_3, P_4\}$.
 - P_1 and P_2 send write request messages to both P_3 and P_4.
 - P_3 and P_4 receive the write requests in different orders, so end up with different values.
 - Later READs may get either value, inconsistent.

- **Example 2:** Single-writer, inconsistent READs
 - $\text{owners}(x) = \{P_2, P_3\}$.
 - Writer P_1 sends write request messages to P_2 and P_3.
 - Message arrives at P_2, P_2 writes its local copy.
 - Then a READ happens at P_2, getting the new value.
 - Later, a READ happens at P_3, getting the old value.
 - Then P_1’s write message arrives at P_3, P_3 writes its local copy.
 - The READs do not overlap, but are concurrent with the WRITE.
 - Out-of-order READ behavior is not allowed by atomic R/W object.
Multi-copy simulation

• So we need some more clever protocols…
• **Idea**: Use atomic transactions:
• E.g., to do a WRITE(x), perform all the writes to all copies as a single atomic transaction, so that they appear to occur instantaneously, as far as READ operations can tell.
• Can implement such a transaction using 2-phase locking:
 – Phase 1: Lock all copies of x and write them.
 – Phase 2: Release all the locks.
• Must solve problems of deadlock for lock acquisition.
• Works because serialization point for WRITE can be placed at the “lock point”, where all the locks have been acquired.
Majority-voting algorithms

- Still not fault-tolerant.
- Just for read/write objects.
- Locate each shared variable x at some known collection of processes, $\text{owners}(x)$.
- Handle each shared variable independently.
- How P_i accesses variable x:
 - READ: Read from a majority of copies.
 - WRITE: Write to a majority of copies.
- Concurrency anomalies suggest that we run each READ or WRITE as an atomic transaction, using an underlying concurrency-control strategy like 2-phase locking.
- More precisely:...
Majority-voting algorithms

• Each copy of x includes an integer tag, initially 0, as well as a value for x.
• How P_i accesses variable x:
 – Performs an atomic transaction, implemented by 2-phase locking.
 – READ:
 • Read from a majority of copies.
 • Return the value associated with the largest tag.
 – WRITE(v):
 • First do an embedded-read of a majority of copies.
 • Determine the largest tag t.
 • Write $(v, t+1)$ to a majority of copies.
 – Each READ or WRITE appears to be instantaneous, because they are implemented as transactions.
Majority-voting algorithms

• To see that this implements an atomic R/W object for x:
 – Choose serialization points for the READ and WRITE operations to be the serialization points for their transactions.
 – These are guaranteed by the transaction implementation, e.g., lock points for 2-phase locking.

• Show that the R/W operations behave as if they occurred at their transactions’ serialization points:
 – WRITE operations are assigned tags \(1, 2, \ldots\) in order of their transactions’ serialization points.
 – READ or embedded-read obtains the largest tag that has been written by a WRITE operation serialized before it (0 if there are none), together with the associated value for x.
 – These two facts depend, in turn, on the fact that each READ or embedded-read reads a majority of the copies, the largest tag gets written to a majority of the copies, and all majorities intersect.
Some issues

- Still no fault-tolerance:
 - Standard transaction impls like 2-phase locking aren’t fault-tolerant.
 - A process that fails while holding locks “kills” the locked objects.

- Can generalize majorities to **quorum configurations**.
- **Quorum configuration:**
 - A set of read-quorums, finite subsets of process indices,
 - A set of write-quorums, finite subsets of process indices, such that
 - \(R \cap W \neq \emptyset \) for every read-quorum \(R \) and write-quorum \(W \).
- READ operation accesses any read-quorum.
- WRITE operation accesses both a read-quorum and a write-quorum (in its two phases).
- Allows tuning for smaller read-quorums, which can speed up READs.
 - E.g., read-one, write-all is a special case.
Fault-tolerant simulation of shared memory in distributed networks
Fault-tolerant simulation of shared memory in distributed networks

- Tolerates f stopping failures, requires $n > 2f$.
- Assume reliable channels.
- Just for read/write objects, in fact, 1-writer multi-reader objects (exercise: extend to MWMR).

- Modeling failures:
 - Use a stop_i input at each external port (of the shared-memory system A, or of the network system B).
 - stop_i disables all locally-controlled actions of process i, in either system.
 - Does not affect messages in transit (in system B).

- **Q:** What is guaranteed by the [ABD] simulation?
[ABD] Guarantees

- Tolerates f stopping failures, requires n > 2f.
- For any execution α of network system B × U, there is an execution α′ of shared-memory system A × U such that:
 - α | U = α′ | U and
 - stop_i events occur for the same i in α and α′.
- Moreover, if α is fair and contains stop_i events for at most f different ports, then α′ is also fair.
- This means that in the simulated shared-memory execution, all non-failed processes continue taking steps---the failed processes in the network system don’t introduce any new blocking.
- Assume shared-memory system A has only 1-writer multi-reader read/write shared variables.
[ABD] algorithm

• Tolerates \(f \) stopping failures, requires \(n > 2f \).
• Implement atomic object for each shared variable \(x \), then combine.
• No transactions, no synchronization.
• Each process keeps:
 – \(\text{val} \), a value for \(x \), initially \(v_0 \)
 – \(\text{tag} \), initially 0
• \(P_1 \) does \(\text{WRITE}(v) \):
 – Let \(t \) be the first unused tag (\(P_i \) knows this because it’s the only writer, hence the only process generating tags).
 – Set local variables to \((v,t) \).
 – Send message (“write", \(v,t \)) to all other processes.
 – When anyone receives such a message:
 • Updates local variables to \((v,t) \) if \(t > \text{current tag} \).
 • In any case, sends ack to \(P_1 \).
 – When \(P_1 \) knows a majority have received \((v,t) \), returns ack.
[ABD] atomic object algorithm

• Any process P_i does a READ:
 – Read own copy; send ("read") messages to all other processes.
 – When anyone receives this message, responds with its current (v,t).
 – When P_i has heard from a majority, prepares to return the v from the (v,t) pair with the largest t.
 – However, before returning v, P_i propagates this (v,t).
 • As in the [Vitanyi, Awerbuch] algorithm.
 • And for a similar reason (prevent out-of-order reads).
 – When anyone receives this propagated (v,t):
 • Updates local variables to (v,t) if $t >$ current tag.
 • Sends ack to P_i.
 – When P_i knows a majority have received (v,t), returns ack.
ABD algorithm

STATE VARIABLES per process
val: V, initially \(v_0 \)
tag: \(\mathbb{N} \), initially 0
readtag: \(\mathbb{N} \), initially 0
lots of “bookkeeping” variables

READERS
on read
readtag := readtag+1
send “read(readtag)” to all other processes
- wait for ack from majority
let t be largest tag received
if t > tag then (val,tag) := (v,t)
where v is value received with t
send “propagate(val,tag,readtag)” to all readers
- wait for ack from majority
return val

ALL PROCESSES
on receiving “read(rt)” from j
send “read-ack(val,tag,rt)” to j

READERS
on receiving “write(v,t)” from writer
if t > tag then
 (val,tag) := (v,t)
send “write-ack(t)” to writer

WRITER
on write(v)
 (val,tag) := (v,tag+1)
send “write(val,tag)” to all readers
 - wait for ack from majority
return ack
Correctness of [ABD] atomic object algorithm

- Well-formedness √
- f-failure termination, for n > 2f √
- Atomicity:
 - Algorithm is similar to [Vitanyi, Awerbuch], so use similar proof, based on partial order lemma.
 - Here, define the partial order by:
 - Order WRITEs by tags.
 - Order READ right after WRITE whose value it gets.
 - **Key: Condition 2:** If operation \(\pi \) finishes before operation \(\varphi \) starts, then \(\varphi \) is not ordered before \(\pi \).
 - Consider cases, based on operation types.
 - Case 1:
 - Because majorities intersect, \(\varphi \) gets a tag \(\geq \) the tag written by \(\pi \).
 - So \(\varphi \) is ordered after \(\pi \).
Correctness of [ABD] atomic object algorithm

- linearization point of write with tag t
 - when majority of processes have tag $\geq t$
 - may linearize multiple writes at same point

- linearization point of read returning value associated with tag t
 - immediately after linearization point of write with tag t, or
 - immediately after invocation of read, (why do we need this?)
 - whichever is later
Atomicity, cont’d

– Partial order:
 • Order WRITEs by tags.
 • Order READ right after WRITE whose value it gets.

– Condition 2: If operation π finishes before operation φ starts, then φ is not ordered before π.

– Case 2:

Then φ gets a tag \geq the tag obtained by π, because of propagation and majority intersection.

– So φ is not ordered before π.

– Other cases: Simpler, LTTR.
Now use [ABD] atomic object algorithm to construct a distributed simulation of any fault-tolerant shared-memory algorithm A that uses 1-writer multi-reader shared vars:

- Simply replace shared variables by [ABD] atomic object implementations.

Guarantees:

- For any execution α of network system $B \times U$, there is an execution α' of shared-memory system $A \times U$ such that:
 - $\alpha \upharpoonright U = \alpha' \upharpoonright U$ and
 - stop$_i$ events occur for the same i in α and α'.
- Moreover, if α is fair and contains stop$_i$ events for at most $f (< n/2)$ different ports, then α' is also fair.

That is, we have a correct simulation, provided that there are at most f failures in the network system B.

[ABD] Simulation Corollaries

• Guarantees:
 – For any execution α of network system $B \times U$, there is an execution α' of shared-memory system $A \times U$ such that:
 • $\alpha \mid U = \alpha' \mid U$ and
 • stop$_i$ events occur for the same i in α and α'.
 • If α is fair and contains stop$_i$ events for at most f different ports, then α' is also fair.

• Corollary: Wait-free atomic snapshot algorithm using 1WmR registers (Chapter 13) can be transformed, using [ABD], to a distributed network memory-snapshot algorithm.

• Corollary: [Vitanyi, Awerbuch] wait-free mWmR register implementation using 1WmR registers can be transformed, using [ABD], to a distributed network register implementation.

• But note:
 – The transformed versions are not wait-free, but guarantee only f-failure termination, where $n > 2f$.
 – Since the [ABD] implementation of atomic 1WmR registers tolerates only $f < n/2$ failures, so do the algorithms that use it.
Some issues

• Can generalize majorities to quorum configuration:
 – Set of read-quorums, set of write-quorums.
 – $R \cap W \neq \emptyset$ for every read-quorum R, write-quorum W.

• Then
 – READ operation accesses both a read-quorum and a write-quorum.
 – WRITE operation accesses just a write-quorum.

• So, we cannot improve READ performance by using smaller read-quorums!

• Q: So how can we get faster READ performance?
• A: Optimize to eliminate “most” propagation phases.
 – When a WRITE with tag t completes, or a READ completes propagation of tag t, then tag t doesn’t require further propagation.
 – So, an operation that completes t can send messages to everyone saying that t is complete; everyone who receives such a message marks t as complete.
 – A READ that gets tag t and sees it marked (anywhere) as complete doesn’t need to propagate t.
Impossibility of n/2-fault-tolerance

- General “fact” about the distributed network model: hardly anything interesting can be computed with $\geq n/2$ failures.
- Contrast with shared-memory model: There are many interesting wait-free shared-memory algorithms.
- Theorem: In the asynchronous network model with $n = m+p$ processes, no implementation of m-writer p-reader atomic registers guarantees f-failure termination for $f \geq n/2$.
- Proof: (Same structure as for other proofs showing impossibility of n/2-fault-tolerance.)
 - By contradiction. Suppose $f \geq n/2$ and we have an algorithm…
 - Assume WLOG that:
 - Initial value of implemented register = 0.
 - P_1 is a writer and P_n is a reader.
 - Partition the n processes into two subsets, each with size $\leq f$:
 - $G_1 = \{1,\ldots,f\}$, $G_2 = \{f+1,\ldots,n\}$.
 - By f-fault-tolerance, even if one entire group fails, the other group must still give correct atomic register responses.
Impossibility of n/2-fault-tolerance

- **Theorem:** In the asynchronous network model with \(n = m+p \) processes, no implementation of m-writer p-reader atomic registers guarantees f-failure termination for \(f \geq n/2 \).
- **Proof, cont’d:**
 - Partition the processes into \(G_1 = \{1,\ldots,f\} \), \(G_2 = \{f+1,\ldots,n\} \).
 - If one group fails, the other group must still give correct atomic register responses.
 - **Execution \(\alpha_1 \):**
 - \(G_2 \) processes fail initially.
 - \(P_1 \) invokes WRITE(1).
 - WRITE must eventually terminate with ack.
 - Let \(\alpha_1' \) be the portion of \(\alpha_1 \) up to the ack.
 - **Execution \(\alpha_2 \):**
 - \(G_1 \) processes fail initially.
 - \(P_n \) invokes READ.
 - READ must eventually terminate with response 0.
 - Let \(\alpha_2' \) be the portion of \(\alpha_2 \) up to the response.
Proof, cont’d

- **Execution α_1:**
 - G_2 processes fail initially.
 - P_1 invokes WRITE(1).
 - WRITE must eventually terminate with ack.
 - Let α_1' be the portion of α_1 up to the ack.

- **Execution α_2:**
 - G_1 processes fail initially.
 - P_n invokes READ.
 - READ must eventually terminate with response 0.
 - Let α_2' be the portion of α_2 up to the response.

- **Execution α_3: Paste...**
 - Don’t fail anyone.
 - Do all the steps of α_1' first, including the ack.
 - Then do all the steps of α_2', including the response of 0.
 - Meanwhile, delay all messages between G_1 and G_2.

- Activity in α_1' and α_2' is independent, so α_3 is an execution.
- But not correct for an atomic register, since the WRITE(1) completes before the start of the READ that returns 0.
- Contradiction.
An implication

- This theorem implies that there is no general simulation of shared-memory systems by networks, preserving f-fault-tolerance, for \(f \geq n/2 \).
 - See book, p. 567, for a definition of f-simulation, which formalizes “preserving f-fault-tolerance”.
 - It’s essentially the overall guarantee we gave earlier for [ABD].
- Because if there were, then we could use it to convert a (trivial) wait-free shared-memory implementation of a multi-writer, multi-reader atomic register into an f-fault-tolerant distributed network implementation, \(f \geq n/2 \).
- Since the example shows that no such algorithm exists, neither does such a general simulation.
Fault-Tolerant Agreement in Asynchronous Networks: The Paxos Algorithm
Agreement in asynchronous networks

• It’s impossible to reach agreement in asynchronous networks, even if we know that at most one failure will occur.

• But what if we really need to?
 – For transaction commit.
 – For agreeing on the order in which to perform operations.
 – ...

• Some possibilities:
 – Randomized algorithm (Ben-Or), terminates with high probability.
 – Approximate agreement.
 – Use a failure detector service, implemented by timeouts.
Best approach

- Guarantee agreement, validity in all cases.
- Guarantee termination if the system eventually "stabilizes":
 - No more failures, recoveries, message losses.
 - Timing of messages, process steps within "normal" bounds.
- Termination should be fast when system is stable.
- Actually, stable behavior need not continue forever, just long enough for computation to terminate.
Eventually stable approach: Some history

- [Dwork, Lynch, Stockmeyer] first presented a consensus algorithm with these properties (2007 Dijkstra Prize)
- [Cristian] used similar approach for group membership algorithms.
- [Lamport, Part-Time Parliament]
 - Introduced the Paxos algorithm.
 - Relationship with [DLS]:
 - Achieves similar guarantees.
 - Paxos allows more concurrency, tolerates more kinds of failures.
 - Basic strategy for assuring safety similar to [DLS].
 - Background:
 - Paper unpublished for 10 years because of nonstandard style.
 - Eventually published “as is”, because others began recognizing its importance and building on its ideas.
Paxos consensus protocol

• Called **Single-Decree Synod** protocol.
• **Assumptions:**
 – Asynchronous processes, stopping failures, also recovery.
 – Messages may be lost.
• Lamport’s paper also describes how to cope with crashes, where volatile memory is lost in a crash (we’ll skip this).

We’ll present the algorithm in two stages:
 – Describe a very nondeterministic algorithm that guarantees the safety properties (agreement, validity).
 – Constrain this to get termination soon after stabilization.
The nondeterministic “safe” algorithm: Ballots

• Uses **ballots**, each of which represents an attempt to reach consensus.

• Ballot = (identifier, value) pair.
 – Identifier is an element of Bid, some totally-ordered set of ballot identifiers.
 – Value in $V \cup \{\bot\}$, where V is the consensus domain.

• Somehow, ballots get started, and get values assigned to them.

• Processes can **vote for**, or **abstain from**, particular ballots.
 – Abstention from a ballot is a promise never to vote for it.
The safe algorithm: Quorums

• The fate of a ballot depends on the actions of quorums of processes on that ballot.

• Quorum configuration:
 – A set of read-quorums, finite subsets of process index set I, and
 – A set of write-quorums, finite subsets of I, such that
 – $R \cap W \neq \emptyset$ for every read-quorum R and write-quorum W.

• Generalization of majorities.

• Ballot becomes dead if every node in some read-quorum abstains from it.

• A ballot can succeed only if every node in some write-quorum votes for it.
Safe algorithm, centralized version

- Anyone can create a new ballot with Bid b:
 - `make-ballot(b)`
 - Provided no ballot with Bid b has yet been created.
 - `val(b)` is set to ⊥.

- A process i can abstain, in one step, from an entire set of ballots:
 - `abstain(B,i), B ⊆ Bid`
 - Provided i has not previously voted for any ballot in B.
 - We allow B to be any set of Bids, not necessarily associated with already-created ballots.
 - For example, B = all Bids in some range \([b_{min}, b_{max}]\).
 - This is important…
Safe algorithm, centralized version

• Anyone can assign a value \(v \) to a ballot id \(b \), \texttt{assign-val}(b,v), provided:
 - A ballot with id = \(b \) has been created.
 - \(\text{val}(b) \) is undefined.
 - \(v \) is someone’s consensus input.
 - (***) For every \(b' \in \text{Bid} \), \(b' < b \), either \(\text{val}(b') = v \) or \(b' \) is dead.

• Notes on (***):
 - Recall: \(b' \) dead means some read-quorum has abstained from \(b' \).
 - (***) Refers to every \(b' \in \text{Bid} \), not just created ones.
 - Relies on “set abstentions”.

• Thus, we can assign a value to a ballot \(b \) only if we know it won’t make \(b \) conflict with lower-numbered ballots \(b' \).

• Motivation:
 - Several ballots can be created, can collect votes.
 - More than one might succeed in collecting write-quorum of votes.
 - But we don’t want successful ballots to conflict.
Safe algorithm, centralized version

• A process i can vote for a ballot b, vote(b,i), if b is a created ballot from which i hasn’t abstained.

• A ballot may succeed, succeed(b), if a write-quorum W has voted for it.

• A process can decide on the value that is associated with any successful ballot, decide(v).
Safety properties

• Validity:
 – Immediate. Only initial values ever get assigned to ballots.

• Agreement:
 – Because of the careful way we avoid assigning different values to ballots that might succeed.
 – **Key Invariant:** If \(\text{val}(b) \neq \bot \), \(b' \in \text{Bid} \), and \(b' < b \), then either \(\text{val}(b') = \text{val}(b) \) or \(b' \) is dead.
 – Implies that all successful ballots have the same value.
Modifying the ** condition for assigning ballot values

• Instead of checking:

 (***) For every $b' \in Bid$, $b' < b$, either $val(b') = v$ or b' is dead.

• Check the apparently-weaker condition:

 (***) Either:
 Every $b' \in Bid$, $b' < b$, is dead, or there exists $b' < b$ with $val(b') = v$, and such that every b'' with $b' < b'' < b$ is dead.

• (***) is easier to check in a distributed algorithm (will show how).

• And (***) implies (**), by easy induction on the number of steps in an execution.
Safe algorithm, distributed version

• Any process i can create a ballot, at any time.
 – Use locally-reserved ballot id b.
 – Ballot start is triggered by signal from a separate BallotTrigger service that decides who should start ballots and when, based on monitoring system behavior.
 – Precise choices don’t affect the safety properties, so for now, leave them nondeterministic.

• Phase 1:
 – Process i starts a ballot when told to do so by BallotTrigger, but doesn’t assign a value to it yet.
 – Rather, first tries to collect enough abstention information for smaller ballots to guarantee (***)
 – If/when it collects that, assigns $\text{val}(b)$.
Safe algorithm, distributed version

- **Phase 2:**
 - Tries to get enough other processes to vote for its new ballot.

- **Communication pattern:**

```
make-ballot  |  Phase 1, collect abstention information
assign-val   |
 succeed     |  Phase 2, collect votes
```
Ensuring (***)

(***) Either every \(b' < b \) is dead, or there exists \(b' < b \) with \(\text{val}(b') = v \), such that every \(b'' \) with \(b' < b'' < b \) is dead.

• Phase 1:
 – Originator process \(i \) tells other processes the new ballot number \(b \).
 – Each recipient \(j \) abstains from all smaller-numbered ballots it hasn’t yet voted for.
 – Each \(j \) sends back to \(i \):
 • The largest ballot number \(< b \) that it has ever voted for, if any, together with that ballot’s value.
 • Else (if no such ballot), sends a message saying there is none.
 – When process \(i \) collects this information from a read-quorum \(R \), it assigns a value \(v \) to ballot \(b \):
 • If anyone in \(R \) says it voted for a ballot \(< b \), then \(v = \) the value associated with the largest-numbered of these ballots.
 • If not, then \(v = \) any initial value.

• Claim this choice satisfies (***):
Ensuring (***)

• (***): Either every $b' < b$ is dead, or there exists $b' < b$ with $\text{val}(b') = v$, such that every b'' with $b' < b'' < b$ is dead.

• Why does this choice satisfy (***)?

• **Case 1:** Someone in R says it voted for a ballot $< b$.
 – Say b' is the largest such ballot number.
 – Then everyone in R has abstained from all ballots between b' and b.
 – So all ballots between b' and b are dead.
 – So, choosing $v = \text{val}(b')$ ensures the second clause of (***).

• **Case 2:** Everyone in R says it did not vote for a ballot $< b$.
 – Then everyone in R has abstained from all ballots $< b$.
 – So all ballots $< b$ are dead.
 – Satisfies the first clause of (***).
Safe algorithm, distributed version, cont’d

- After assigning val(b) = v, originator i sends Phase 2 messages asking processes to vote for b.
- If i collects such votes from a write-quorum W, it can successfully complete ballot b and decide v.

- Note:
 - Originator i, or others, could start up new ballots at any time.
 - (***) guarantees that all successful ballots will have the same value v.
 - Arbitrary concurrent attempts to conduct ballots are OK, at least with respect to safety.
Liveness

• To guarantee termination when the algorithm stabilizes, we must restrict its nondeterminism.
• Most importantly, must restrict BallotTrigger so that, after stabilization:
 – It asks only one process to start ballots (leader).
 – It doesn’t tell the leader to start new ballots too often---allows enough time for ballots to complete.
• E.g., BallotTrigger might:
 – Use knowledge of “normal case” time bounds to try to detect who has failed.
 – Choose smallest-index non-failed process as leader (refresh periodically).
 – Tell the leader to try a new ballot every so often---allowing enough “normal case” message delays to finish the protocol.
• Notice that BallotTrigger uses time information---not purely asynchronous.
• We know we can’t solve the problem otherwise.
• Algorithm tolerates inaccuracies in BallotTrigger: If it “guesses wrong” about failures or delays, termination may be delayed, but safety properties are still guaranteed.
Replicated state machines (RSMs)

- Paper also deals with repeated consensus, in particular, on a sequence of operations for an RSM.
- Yields an RSM that tolerates stopping failures/recoveries, message loss/duplication.
- Strategy:
 - Use infinitely many instances of Paxos to agree on first operation, second, third,…
 - Similar to Herlihy’s universal construction, which uses repeated consensus to decide on successive operations for an atomic object.
- Lamport’s paper also includes various optimizations, LTTR.
- Considerable follow-on work, engineering Paxos to work for maintaining real data.
 - Disk Paxos
 - HP, Microsoft, Google,…
Next time

• Self-stabilization
• [Dolev book], Chapter 2