Today’s plan

• Partially synchronous (timed) distributed systems
• Modeling timed systems
• Proof methods
• Mutual exclusion in timed systems
• Consensus in timed systems
• Clock synchronization
• Reading:
 – Chapters 23, 24, 25
 – [Attiya, Welch], Section 6.3, Chapter 13
We’ve studied distributed algorithms in synchronous and asynchronous distributed models.

Now, intermediate, partially synchronous models.

- Involve some knowledge of time, but not synchronized rounds:
 - Bounds on relative speed of processes,
 - Upper and lower bounds for message delivery,
 - Local clocks, proceeding at approximately-predictable rates.

Useful for studying:
- Distributed algorithms whose behavior depends on time.
- Practical communication protocols.
- (Newer) Mobile networks, embedded systems, robot control,…

Needs new models, new proof methods.

Leads to new distributed algorithms, impossibility results.
Modeling Timed Systems
Modeling timed systems

MMT automata [Merritt, Modugno, Tuttle]
- Simple, special-cased timed model
- Immediate extension of I/O automata

GTA, more general timed automata

Timed I/O Automata
- Still more general
- [Kaynar, Lynch, Segala, Vaandrager] monograph
- Mathematical foundation for Tempo.

Textbook cover image removed due to copyright restrictions.

MMT Automata

• **Definition:** An MMT automaton is an I/O automaton with finitely many tasks, plus a boundmap (lower, upper), where:
 - lower maps each task T to a lower bound lower(T), \(0 \leq \text{lower}(T) < \infty\) (can be 0, cannot be infinite),
 - upper maps each task T to an upper bound upper(T), \(0 < \text{upper}(T) \leq \infty\) (cannot be 0, can be infinite),
 - For every T, \(\text{lower}(T) \leq \text{upper}(T)\).

• **Timed executions:**
 - Like ordinary executions, but with times attached to events.
 - \(\alpha = s_0, (\pi_1, t_1), s_1, (\pi_2, t_2), s_2, \ldots\)
 - Subject to the upper and lower bounds.
 - Task T can’t be continuously enabled for more than time upper(T) without an action of T occurring.
 - If an action of T occurs, then T must have been continuously enabled for time at least lower(T).
 - Restricts the set of executions (unlike having just upper bounds):
 - No fairness anymore, just time bounds.
MMT Automata, cont’d

• **Timed traces:**
 – Suppress states and internal actions.
 – Keep info about external actions and their times of occurrence.

• **Admissible timed executions:**
 – Infinite timed executions with times approaching ∞, or
 – Finite timed executions such that $\text{upper}(T) = \infty$ for every task enabled in the final state.

• **Rules out:**
 – Infinitely many actions in finite time (“Zeno behavior”).
 – Stopping when some tasks still have work to do and upper bounds by which they should do it.

• **Simple model, not very general, but good enough to describe some interesting examples:**
Example: Timed FIFO channel

- Consider our usual FIFO channel automaton.
 - **State:** queue
 - **Actions:**
 - Inputs: send(m), m in M
 - Outputs: receive(m), m in M
 - **Tasks:** receive = \{ receive(m) : m in M \}

- **Boundmap:**
 - Associate lower bound 0, upper bound d, with the receive task.

- ** Guarantees delivery of oldest message in channel (head of queue), within time d.**
Composition of MMT automata

• Compose MMT automata by
 – Composing the underlying I/O automata,
 – Combining all the boundmaps.
 – Composed automaton satisfies all timing constraints, of all components.

• Satisfies pasting, projection, as before:
 – Project timed execution (or timed trace) of composition to get timed executions (timed traces) of components.
 – Paste timed executions (or timed traces) that match up at boundaries to obtained timed executions (timed traces) of the composition.

• Also, a hiding operation, which makes some output actions internal.
Example: Timeout system

- **P₁**: Sender process
 - Sends “alive” messages at least every time \(l \), unless it has failed.
 - Express using one send task, bounds \([0,l]\).
- **P₂**: Timeout process
 - Decrements a count from \(k \); if reaches 0 without a message arriving, output timeout.
 - Express with 2 tasks, decrement with bounds \([l₁, l₂]\), and timeout with bounds \([0,l]\).
 - Need non-zero lower bound for decrement, so that steps can be used to measure elapsed time.
- Compose \(P₁, P₂, \) and timed channel with bound \(d \).
- Guarantees (assuming that \(k l₁ > l + d \)):
 - If \(P₂ \) times out \(P₁ \) then \(P₁ \) has in fact failed.
 - Even if \(P₂ \) takes steps as fast as possible, enough time has passed when it does a timeout.
 - If \(P₁ \) fails then \(P₂ \) times out \(P₁ \), and does so by time \(k l₂ + l \).
 - \(P₂ \) could actually take steps slowly.
Example: Two-task race

• One automaton, two tasks:
 – **Main** = \{ increment, decrement, report \}
 • Bounds \([l_1, l_2]\).
 – **Interrupt** = \{ set \}
 • Bounds \([0, l]\).
• Increment **count** as long as flag = false, then **decrement**.
• When **count** returns to 0, output **report**.
• **Set** action sets flag true.
• **Q:** What is a good upper bound on the latest time at which a report may occur?
• \(l + l_2 + (l_2 / l_1) \ l \)
• Obtained by incrementing as fast as possible, then decrementing as slowly as possible.
General Timed Automata

• MMT is simple, but can’t express everything we might want:
 – Example: Perform actions “one”, then “two”, in order, so that “one” occurs at an arbitrary time in \([0,1]\) and “two” occurs at time exactly 1.

• GTAs:
 – More general, expressive.
 – No tasks and bounds.
 – Instead, explicit time-passage actions \(\nu(t)\), in addition to inputs, outputs, internal actions.
 – Time-passage steps \((s, \nu(t), s')\), between ordinary discrete steps.
Example: Timed FIFO Channel

• Delivers oldest message within time d

• States:

 queue
 now, a real, initially 0
 last, a real or ∞, initially ∞

• Transitions:

 send(m)
 Effect:
 add m to queue
 if |queue| = 1 then last := now + d

 receive(m)
 Precondition:
 m = head(queue)
 Effect:
 remove head of queue
 if queue is nonempty then last := now + d else last := ∞

 $\nu(t)$
 Precondition:
 now + t \leq last
 Effect:
 now := now + t
Another Timed FIFO Channel

• Delivers every message within time d

• States:
 queue, FIFO queue of (message, real) pairs
 now, a real, initially 0

• Transitions:
 send(m)
 Effect:
 add (m, now + d) to queue
 receive(m)
 Precondition:
 (m,t) = head(queue), for some t
 Effect:
 remove head of queue
 υ(t)
 Precondition:
 now + t ≤ t', for every (m, t') in queue
 Effect:
 now := now + t
Transforming MMTAs to GTAs

• Program the timing constraints explicitly.
• Add state components:
 – *now*, initially 0
 – For each task T, add *time-valued variables*:
 • $\text{first}(T)$, initially $\text{lower}(T)$ if T is enabled in initial state, else 0.
 • $\text{last}(T)$, initially $\text{upper}(T)$ if T is enabled in initial state, else ∞.
• Manipulate the *first* and *last* values to express the MMT upper and lower bound requirements, e.g.:
 – Don’t perform any task T if $\text{now} < \text{first}(T)$.
 – Don’t let time pass beyond any $\text{last}(\cdot)$ value.
 – When task T becomes enabled, set $\text{first}(T)$ to $\text{lower}(T)$ and $\text{last}(T)$ to $\text{upper}(T)$.
 – When task T performs a step and is again enabled, set $\text{first}(T)$ to $\text{lower}(T)$ and $\text{last}(T)$ to $\text{upper}(T)$.
 – When task T becomes disabled, set $\text{first}(T)$ to 0 and $\text{last}(T)$ to ∞.
Two-task race

• New state components:
 now, initially 0
 first(Main), initially \(l_1 \)
 last(Main), initially \(l_2 \)
 last(Interrupt), initially 1

• Transitions:
 increment:
 Precondition:
 flag = false
 now \geq first(Main)
 Effect:
 count := count + 1
 first(Main) := now + l_1
 last(Main) := now + l_2

decrement:
 Precondition:
 flag = true
 count > 0
 now \geq first(Main)
 Effect:
 count := count - 1
 first(Main) := now + l_1
 last(Main) := now + l_2

report:
 • Precondition:
 flag = true
 count = 0
 reported = false
 now \geq first(Main)
 • Effect:
 reported := true
 first(Main) := 0
 last(Main) := \infty
Two-task race

set:

Precondition:
flag = false

Effect:
flag := true
last(Interrupt) := ∞

υ(t):

Precondition:
now + t ≤ last(Main)
now + t ≤ last(Interrupt)

Effect:
now := now + t
More on GTAs

• Composition operation
 – Identify external actions, as usual.
 – Synchronize time-passage steps globally.
 – Pasting and projection theorems.

• Hiding operation

• Levels of abstraction, simulation relations
Timed I/O Automata (TIOAs)

- Extension of GTAs in which time-passage steps are replaced by trajectories, which describe state evolution over time intervals.
 - Formally, mappings from time intervals to states.
 - Allows description of interesting state evolution, such as:
 - Clocks that evolve at approximately-known rates.
 - Motion of vehicles, aircraft, robots, in controlled systems.
- Composition, hiding, abstraction.
Proof methods for GTAs and TIOAs.

- Like those for untimed automata.
- Compositional methods.
- Invariants, simulation relations.
 - They work for timed systems too.
 - Now they generally involve time-valued state components as well as "ordinary" state components.
 - Still provable using induction, on number of discrete steps + trajectories.
Example: Two-task race

- **Invariant 1:** \(\text{count} \leq \left\lfloor \frac{\text{now}}{l_1} \right\rfloor \).
 - \(\text{count} \) can’t increase too much in limited time.
 - Largest \(\text{count} \) results if each \(\text{increment} \) takes smallest time, \(l_1 \).

- Prove by induction on number of discrete + time-passage steps? Not quite:
 - Property is not preserved by \(\text{increment} \) steps, which increase \(\text{count} \) but leave \(\text{now} \) unchanged.

- So we need another (stronger) invariant.

- **Q:** What else changes in an \(\text{increment} \) step?
 - Before the step, \(\text{first(Main)} \leq \text{now} \); afterwards, \(\text{first(Main)} = \text{now} + l_1 \).
 - So \(\text{first(Main)} \) should appear in the stronger invariant.

- **Invariant 2:** If not reported then \(\text{count} \leq \left\lfloor \frac{\text{first(Main)}}{l_1 - 1} \right\rfloor \).
- Use Invariant 2 to prove Invariant 1.
Two-task race

• **Invariant 2:** If not reported then
 \[\text{count} \leq \left\lfloor \frac{\text{first(Main)}}{l_1} - 1 \right\rfloor \]

• **Proof:**
 – By induction.
 – **Base:** Initially, \(\text{LHS} = \text{RHS} = 0 \).
 – **Inductive step:** Dangerous steps either increase LHS (increment) or decrease RHS (report).
 • **Time-passage steps:** Don’t change anything.
 • **report:** Can’t cause a problem because then \(\text{reported} = \text{true} \).
 • **increment:**
 – \(\text{count} \) increases by 1
 – \(\text{first(Main)} \) increases by at least \(l_1 \): Before the step, \(\text{first(Main)} \leq \text{now} \), and after the step, \(\text{first(Main)} = \text{now} + l_1 \).
 – So the inequality is preserved.
Modeling timed systems (summary)

- **MMT automata** [Merritt, Modugno, Tuttle]
 - Simple, special-cased timed model
 - Immediate extension of I/O automata
 - Add upper and lower bounds for tasks.

- **GTA**, more general timed automata
 - Explicit time-passage steps

- **Timed I/O Automata**
 - Still more general
 - Instead of time-passage steps, use trajectories, which describe evolution of state over time.
 - [Kaynar, Lynch, Segala, Vaandrager] monograph
 - Tempo support
Simulation relations

• These work for GTAs/TIOAs too.
• Imply inclusion of sets of timed traces of admissible executions.
• Simulation relation definition (from A to B):
 – Every start state of A has a related start state of B. (As before.)
 – If s is a reachable state of A, u a related reachable state of B, and (s, π, s’) is a discrete step of A, then there is a timed execution fragment α of B starting with u, ending with some u’ of B that is related to s’, having the same timed trace as the given step, and containing no time-passage steps.
 – If s is a reachable state of A, u a related reachable state of B, and (s, υ(t), s’) is a time-passage step of A, then there is a timed execution fragment of B starting with u, ending with some u’ of B that is related to s’, having the same timed trace as the given step, and whose total time-passage is t.
Example: Two-task race

- Prove upper bound of $l + l_2 + (l_2 / l_1) l$ on time until report.
- Intuition:
 - Within time l, set flag true.
 - During time l, can increment count to at most approximately l / l_1.
 - Then it takes time at most $(l / l_1) l_2$ to decrement count to 0.
 - And at most another l_2 to report.
- Could prove a simulation relation, to a trivial GTA that just outputs report, at any time $\leq l + l_2 + (l_2 / l_1) l$.
- Express this using time variables:
 - now
 - last(report), initially $l + l_2 + (l_2 / l_1) l$.
- The simulation relation has an interesting form: inequalities involving the time variables:
Simulation relation

- s = state of race automaton, u = state of time bound spec automaton
- u.now = s.now, u.reported = s.reported
- u.last(report) ≥
 s.last(Int) + (s.count + 2) l_2 + (l_2 / l_1) (s.last(Int) – s.first(Main)),
 if s.flag = false and s.first(Main) ≤ s.last(Int),
 s.last(Main) + (s.count) l_2, otherwise.

- **Explanation:**
 - If flag = true, then time until report is the time until the next decrement, plus
 the time for the remaining decrements and the report.
 - Same if flag = false but must become true before another increment.
 - Otherwise, at least one more increment can occur before flag is set.
 - After set, it might take time (s.count + 1) l_2 to count down and report.
 - But current count could be increased some more:
 - At most 1 + (last(Int) – first(Main)) / l_1 times.
 - Multiply by l_2 to get extra time to decrement the additional count.
Timed Mutual Exclusion Algorithms
Timed mutual exclusion

- Model as before, but now the Us and the algorithm are MMT automata.
- Assume one task per process, with bounds $[l_1, l_2]$, $0 < l_1 \leq l_2 < \infty$.
- Users: Arbitrary tasks, boundmaps.

- **Mutual exclusion problem**: guarantee well-formedness, mutual exclusion, and progress, in all admissible timed executions.
- No high-level fairness guarantees, for now.
- Now, algorithm’s correctness is allowed to depend on timing assumptions.
Fischer mutual exclusion algorithm

- Famous, “published” only in email from Fischer to Lamport.
- A toy algorithm, widely used as a benchmark for modeling and verification methods for timing-based systems.
- Uses a single read/write register, `turn`.
- Compare: In asynchronous model, need n variables.

- Incorrect, asynchronous version (process i):
 - Trying protocol:
 - wait for `turn = 0`
 - `turn := i`
 - if `turn = i`, go critical; else go back to beginning
 - Exit protocol:
 - `turn := 0`
Incorrect execution

- To avoid this problem, add a timing constraint:
 - Process i waits long enough between set_i and check_i so that no other process j that sees $\text{turn} = 0$ before set_i can set $\text{turn} := j$ after check_i.
 - That is, interval from set_i to check_i is strictly longer than interval from test_j to set_j.

- Can ensure by counting steps:
 - Before checking, process i waits k steps, where $k > \frac{l_2}{l_1}$.
 - Shortest time from set_i to check_i is $k \cdot l_1$, which is greater than the longest time l_2 from test_j to set_j.
Fischer mutex algorithm

• Pre/effect code, p. 777.
• Not quite in the assumed model:
 – That has just one task/process, with bounds \([l_1, l_2]\).
 – Here we use another task for the check, with bounds \([a_1, a_2]\), where \(a_1 = k l_1, a_2 = k l_2\),
 – This version is more like the ones used in most verification work.
• Proof?
 – Easy to see the algorithm avoids the bad example, but how do we know it’s always correct?
Proof of mutex property

• Use invariants.
• One of the earliest examples of an assertional proof for timed models.
• Key intermediate assertion:
 – If $pc_i = \text{check}$, $\text{turn} = i$, and $pc_j = \text{set}$, then $\text{first}(\text{check}_i) > \text{last}(\text{main}_j)$.
 – That is, if i is about to check turn and get a positive answer, and j is about to set turn, then the earliest time when i might check it is strictly after the latest time when j might set it.
 – Rules out the bad interleaving.
• Can prove this by an easy induction.
• Use it to prove main assertion:
 – If $pc_i \in \{ \text{leave-try}, \text{crit}, \text{reset} \}$, then $\text{turn} = i$, and for every j, $pc_j \neq \text{set}$.
• Which immediately implies mutual exclusion.
Proof of progress

• Easy event-based argument:
 – By contradiction: Assume someone is in T, and no one is thereafter ever in C.
 – Then eventually region changes stop, everyone is in either T or R, at least one process is in T.
 – Eventually turn acquires a contender’s index, then stabilizes to some contender’s index, say i.
 – Then i proceeds to C.

• Refine this argument to a time bound, for the time from when someone is in T until someone is in C:
 – $2a_2 + 5l_2 = 2k l_2 + 5l_2$
 – Since k is approximately $L = l_2 / l_1$ (timing uncertainty ratio), this is $2L l_2 + O(l_2)$
 – Thus, timing uncertainty stretches the time complexity.
• **Q:** Why is the time complexity “stretched” by the timing uncertainty $L = (l_2/l_1)$, yielding an $L l_2$ term?

• Process i must ensure that time $t = l_2$ has elapsed, to know that another process has had enough time to perform a step.

• Process i determines this by counting its own steps.

• Must count at least t/l_1 steps to be sure that time t has elapsed, even if i’s steps are fast (l_1).

• But the steps could be slow (l_2), so the total time could be as big as $(t/l_1) l_2 = (l_2/l_1) t = L t$.

• Requires real time Lt for process in a system with timing uncertainty L to be sure that time t has elapsed.

• Similar stretching phenomenon arose in timeout example.
Lower bound on time

Theorem: There is no timed mutex algorithm for 2 processes with 1 shared variable, having an upper bound of $L l_2$ on the time for someone to reach C.

Proof:
- Like the proof that 1 register is insufficient for 2-process asynchronous mutual exclusion.
- By contradiction; suppose such an algorithm exists.
- Consider admissible execution α in which process 1 runs alone, slowly (all steps take l_2).
- By assumption, process 1 must enter C within time $L l_2$.
- Must write to the register x before $\rightarrow C$.
- Pause process 1 just before writing x for the first time.
Lower bound on time

- Proof, cont’d:
 - Now run process 2, from where process 1 covers x.
 - p2 sees initial state, so eventually →C.
 - If p2 takes steps as slowly as possible (l_2), must →C within time $L \cdot l_2$.
 - If we speed p2 up (shrink), p2 →C within time $L \cdot l_2 (l_1 / l_2) = L \cdot l_1$.
 - So we can run process 2 all the way to C during the time p1 is paused, since $l_2 = L \cdot l_1$.
 - Then as in asynchronous case, can resume p1, overwrites x, enters C, contradiction.
The Fischer algorithm is fragile

- Depends on timing assumptions, even for the main safety property, mutual exclusion.
- It would be nice if safety were independent of timing (e.g., like Paxos).
- Can modify Fischer so mutual exclusion holds in all asynchronous runs, for n processes, using 3 registers [Section 24.3].
- But this fails to guarantee progress, even assuming timing eventually stabilizes (like Paxos).
- In fact, progress depends crucially on timing:
 - If time bounds are violated, then algorithm can deadlock, making future progress impossible.
- In fact, we have:
Another impossibility result!

- It’s **impossible** to guarantee n-process mutual exclusion in all asynchronous runs, progress if timing stabilizes, with < n registers:

- **Theorem:** There is no asynchronous read/write shared-memory algorithm for n ≥ 2 processes that:
 - Guarantees **well-formedness and mutual exclusion** when run asynchronously,
 - Guarantees **progress** when run so that each process’ step bounds eventually are in the range \([l_1, l_2]\), and
 - Uses < n shared registers.

- !!!

- **Proof:** Similar to that of impossibility of asynchronous mutex for < n registers (tricky).
Timed Consensus Algorithms
Consensus in timed systems

- **Network model:**
- **Process:**
 - MMT automaton, finitely many tasks.
 - Task bounds $[l_1, l_2]$, $0 < l_1 \leq l_2 < \infty$, $L = l_2 / l_1$
 - Stopping failures only.
- **Channels:**
 - GTA or TIOA
 - Reliable FIFO channels, upper bound of d for every message.
- **Properties:**
 - Agreement,
 - Validity (weak or strong),
 - Failure-free termination
 - f-failure termination, wait-free termination

- In general, we’re allowed to rely on time bounds for both safety + liveness.
- **Q:** Can we solve fault-tolerant agreement? How many failures? How much time does it take?
Consensus in timed systems

• Assumptions:
 – $V = \{0, 1\}$,
 – Completely connected graph,
 – $l_1, l_2 << d$ (in fact, $n l_2 << d, L l_2 << d$).
 – Every task always enabled.

• Results:
 – Simple algorithm, for any number f of failures, strong validity, time bound $\approx f L d$
 – Simple lower bound: $(f+1) d$.
 – More sophisticated algorithm: $\approx Ld + (2f+2) d$
 – More sophisticated lower bound: $\approx Ld + (f-1) d$

• [Attiya, Dwork, Lynch, Stockmeyer]
Simple algorithm

- **Implement a perfect failure detector**, which times out failed processes.
 - Process i sends periodic “alive” messages.
 - Process i determines process j has failed if i doesn’t receive any messages from j for a large number of i’s steps ($\approx (d + l_2) / l_1$ steps).
 - Time until detection at most $\approx L \cdot d + O(L \cdot l_2)$.
 - Ld is the time needed for a timeout.

- **Use the failure detector to simulate a round-based synchronous consensus algorithm for the required $f+1$ rounds.**

- **Time for consensus at most $\approx f \cdot L \cdot d + O(f \cdot L \cdot l_2)$.**
Simple lower bound

- Upper bound (so far): $\approx f L d + O(f L l_2)$.
- Lower bound $(f+1)d$
 - Follows from $(f+1)$-round lower bound for synchronous model, via a model transformation.
- Note the role of the timing uncertainty L:
 - Appears in the upper bound: $f L d$, time for f successive timeouts.
 - But doesn’t appear in the lower bound.
- Q: How does the real cost depend on L?
Better algorithm

- **Time bound:** \(Ld + (2f+2)d + O(f I_2 + L I_2) \)
 - Time for just one timeout!
 - Tricky algorithm, LTTR.
 - Uses a series of rounds, each involving an attempt to decide.
 - At even-numbered rounds, try to decide 0; at odd-numbered rounds, try to decide 1.
 - Each failure can cause an attempt to fail, move on to another round.
 - Successful round takes time at most \(\approx Ld \).
 - Unsuccessful round \(k \) takes time at most \(\approx (f_k + 1) d \), where \(f_k \) is the number of processes that fail at round \(k \).
Better lower bound

• Upper bound: \(\approx Ld + (2f+2)d \)
• Lower bound: \(Ld + (f-1) d \)

• Interesting proof---uses practically every lower bound technique we’ve seen:
 – Chain argument, as in Chapter 6.
 – Bivalence argument, as in Chapter 12.
 – Stretching and shrinking argument for timed executions, as in Chapter 24.

• LTTR
[Dwork, Lynch, Stockmeyer 88]

consensus results

- 2007 Dijkstra prize
- Weaken the time bound assumptions so that they hold eventually, from some point on, not necessarily always.
- Assume $n > 2f$ (unsolvable otherwise).
- Guarantees agreement, validity, f-failure termination.
 - Thus, safety properties (agreement and validity) don’t depend on timing.
 - Termination does---but in a nice way: guaranteed to terminate if time bound assumptions hold from any point on.
 - Similar to problem solved by Paxos.

- Algorithm:
 - Similar to Paxos (earlier), but allows less concurrency.
[DLS] algorithm

- Rotating coordinator as in 3-phase commit, pre-allocated “stages”.
- In each stage, one pre-determined coordinator takes charge, tries to coordinate agreement using a four-round protocol:
 1. Everyone sends “acceptable” values to coordinator; if coordinator receives “enough”, it chooses one to propose.
 2. Coordinator sends proposed value to everyone; anyone who receives it “locks” the value.
 3. Everyone who received a proposal in round 2 sends an ack to the coordinator; if coordinator receives “enough” acks, decides on the proposed value.
 4. Everyone exchanges lock info.
- “Acceptable” means opposite value isn’t locked.

- Implementing synchronous rounds:
 - Use the time assumptions.
 - Emulation may be unreliable until timing stabilizes.
 - That translates into possible lost messages, in earlier rounds.
 - Algorithm can tolerate lost messages before stabilization.
Mutual exclusion vs. consensus

- Mutual exclusion with \(< n\) shared registers:
 - Asynchronous systems:
 • Impossible
 - Timed systems:
 • Solvable, time upper bound \(O(L^{1/2})\), matching lower bound.
 - Systems where timing assumptions hold from some point on:
 • Impossible to guarantee both safety (mutual exclusion) and liveness (progress).

- Consensus with \(f\) failures, \(f \geq 1\):
 - Asynchronous systems:
 • Impossible
 - Timed systems:
 • Solvable, time upper bound \(Ld + O(d)\), matching lower bound.
 - Systems where timing assumptions hold from some point on:
 • Can guarantee both safety (agreement and validity) and liveness (f-failure termination), for \(n > 2f\).
Clock Synchronization
Algorithms
Clock synchronization

- **Network model:**
- **Process:**
 - TIOA
 - Includes a physical clock component that progresses at some (possibly varying) rate in the range \([1 - \rho, 1 + \rho]\).
 - Not under the process’ control.
- **Channels:**
 - GTA or TIOA
 - Reliable FIFO channels, message delay bounds in interval \([d_1, d_2]\).
- **Properties:**
 - Each node, at each time, computes the value of a logical clock
 - Agreement: Logical clocks should become, and remain, within a small constant \(\varepsilon\) of each other.
 - Validity: Logical clock values should be approximately within the range of the physical clock values.

- **Issues:**
 - Timing uncertainty
 - Tolerating failures
 - Scalability
 - Accommodating external clock inputs
Timing uncertainty

• E.g., 2 processes:
 – Messages from p_1 to p_2 might always take the minimum time d_1.
 – Messages from p_2 to p_1 might always take the maximum time d_2.
 – Or vice versa.
 – Either way, the logical clocks are supposed to be within ε of each other.
 – Implies that $\varepsilon \geq \frac{(d_2 - d_1)}{2}$

• Can achieve $\varepsilon \approx \frac{(d_2 - d_1)}{2}$, if clock drift rate is very small and there are no failures.

• For n processes in fully connected graph, can achieve $\varepsilon \approx \frac{(d_2 - d_1)(1 - 1/n)}$, and that’s provably optimal.
Accommodating failures

• Several published algorithms for \(n > 3f \) processes to establish and maintain clock synchronization, in the presence of up to \(f \) Byzantine faulty processes.
 – [Lamport], [Dolev, Strong], [Lundelius, Lynch],…
 – Some algorithms perform fault-tolerant averaging.
 – Some wait until \(f+1 \) processes claim a time has been reached before jumping to that time.
 – Etc.

• Lower bound: \(n > 3f \) is necessary.
 – Original proof: [Dolev, Strong]
 – Cuter proof: [Fischer, Lynch, Merritt]
 • By contradiction: Assume (e.g.) a 3-process clock synch algorithm that tolerates 1 Byzantine faulty process.
 • Form a large ring, from many copies of the algorithm:
Accommodating failures

• Lower bound proof: \(n > 3f \) necessary
 – By contradiction: Assume a 3-process clock synch algorithm that tolerates 1 Byzantine faulty process.
 – Form a large ring, from many copies of the algorithm:

 ![Diagram](image)

 – Let the physical clocks drift progressively, as we move around the ring, fastest and slowest at opposite sides of the ring.
 – Any consecutive pair’s logical clocks must remain within \(\epsilon \) of each other, by agreement, and must remain approximately within the range of their physical clocks, by validity.
 – Can’t satisfy this everywhere in the ring.
Scalability

- Large, not-fully-connected network.
- E.g., a line:

 ![Diagram of a line network with asynchronous communication](attachment:image)

- Can’t hope to synchronize distant nodes too closely.
- Instead, try to achieve a gradient property, saying that neighbors’ clocks are always closely synchronized.
- Impossibility result for gradient clock synch [Fan 04]: Any clock synch algorithm in a line of length D has some reachable state in which the logical clocks of two neighbors are $\Omega(\log D / \log \log D)$ apart.
- Algorithms exist that achieve a constant gradient “most of the time”.
- And newer algorithms that achieve $O(\log D)$ all of the time.
External clock inputs

- Practical clock synch algorithms use reliable external clock sources:
 - NTP time service in Internet
 - GPS in mobile networks
- Nodes with reliable time info send it to other nodes.
- Recipients may correct for communication delays
- Typically ignore failures.
Mobile Wireless Network Algorithms
Mobile networks

- Nodes moving in physical space, communicating using local broadcast.
- Mobile phones, hand-held computers; robots, vehicles, airplanes
- Physical space:
 - Generally 2-dimensional, sometimes 3
- Nodes:
 - Have uids.
 - May know the approximate real time, and their own approximate locations.
 - May fail or be turned off, may restart.
 - Don’t know a priori who else is participating, or who is nearby.
- Communication:
 - Broadcast, received by nearby listening nodes.
 - May be unreliable, subject to collisions/losses, or
 - May be assumed reliable (relying on backoff mechanisms to mask losses).
- Motion:
 - Usually unpredictable, subject to physical limitations, e.g. velocity bounds.
 - May be controllable (robots).
- Q: What problems can/cannot be solved in such networks?
Some preliminary results

• Dynamic graph model
 – Welch, Walter, Vaidya,…
 – Algorithms for mutual exclusion, k-exclusion, message routing,…

• Wireless networks with collisions
 – Algorithms / lower bounds for broadcast in the presence of collisions [Bar-Yehuda, Goldreich, Itai], [Kowalski, Pelc],…
 – Algorithms / lower bounds for consensus [Newport, Gilbert, et al.]

• Rambo atomic memory algorithm
 – [Gilbert, Lynch, Shvartsman]
 – Reconfigurable Atomic Memory for Basic (read/write) Objects
 – Implemented using a changing quorum system configuration.
 – Paxos consensus used to change the configuration, runs in the background without interfering with ongoing reads/writes.

• Virtual Node abstraction layers for mobile networks
 – Gilbert, Nolte, Brown, Newport,…
Some preliminary results

• Neighbor discovery, counting number of nodes, maintaining network structures,…

• Leave all this for another course.
VN Layers for mobile networks

- Add Virtual Nodes: Simple state machines (TIOAs) located at fixed, known geographical locations (e.g., grid points).
- Mobile nodes in the vicinity emulate the VSNs, using a Replicated State Machine approach, with an elected leader managing communication.
- Virtual Nodes may fail, later recover in initial state.
- Program applications over the VSN layer.
 - Geocast, location services, point-to-point communication, bcast.
 - Data collection and dissemination.
 - Motion coordination (robots, virtual traffic lights, virtual air-traffic controllers).

- Other work: Neighbor discovery, counting number of nodes, maintaining network structures,…
- Leave all this for another course.
Next time…

• There is no next time!
• Have a very nice break!