1 External Memory

Used Erik Demaine’s 2003 notes.

Memory M, block size B, problem size N

basic operations:

• Scanning: $O(N/B)$

• reversing an array: $O(N/B)$

Linked list

• operations insert, delete, traverse

• insert and delete cost $O(1)$

• must traversing k items cost $O(k)$?

• keep segments of list in blocks

• keep each block half full

• no can traverse $B/2$ items on one read

• so $O(K/B)$ to traverse K items

• on insert: if block overflows, split into two half-full blocks

• on delete:

 – if block less than half full, check next block
 – if it is more than half full, redistribute items
 – otherwise, merge items from both blocks, drop empty block

• Note: can also insert and delete while traversing at cost $1/B$ per operation

• so, e.g., can hold $O(1)$ “fingers” in list and insert/delete at fingers.

Search trees:

• binary tree cost $O(\log n)$ memory transfers

• wastes effort because only getting one useful item per block read

• Instead use $B+1$=array tree; block has B splitters

• Now $O(\log_B N)$, much better

• Need to keep balanced while insert/delete:

 – require every block to be at least half full (so degree $\geq B/2$)
 – on insert, if block is full, split into two blocks and pass up a splitter
to insert in parent
– may overflow parent, forcing recursive splits
– on delete, if block half empty, merge as for linked lists
– may empty parent, force recursive merges

• optimal in comparison model:
 – Reading a block reveals position of query among B splitters
 – i.e. \(\log B \) bits of information
 – Need \(\log N \) bits.
 – so \(\log N / \log B \) queries needed.

Sorting:
• Standard merge sort based on linear scans: \(T(N) = 2T(N/2) + O(N/B) = O((N/B) \log N) \)
• Can do better by using more memory
• \(\frac{M}{B} \)-way merge
• keep head block of each of \(\frac{M}{B} \) lists in memory
• keep emitting smallest item
• when emit \(B \) items, write a block
• when block empties, read next block of that list
• \(T(M) = O(N/B) + (M/B)T(N/(M/B)) = O((N/B) \log_{M/B} N/B) \)

Optimal for comparison sort:
• Assume each block starts and is kept sorted (only strengthens lower bound)
• loading a block reveals placement of \(B \) sorted items among \(M \) in memory
• \(\binom{M+B}{B} \approx (eM/B)^B \) possibilities
• so \(\log() \approx B \log M/B \) bits of info
• need \(N \log N \) bits of info about sort,
• except in each of \(N/B \) blocks \(B \log B \) bits are redundant (sorted blocks)
• total \(N \log B \) redundant i.e. \(N \log N/B \) needed.
• now divide by bits per block load
1.1 Buffer Trees

Mismatch:

- In memory binary search tree can sort in \(O(n \log n) \) (optimal) using inserts and deletes
- But sorting with \(B \)-tree costs \(N \log_B N \)
- So inserts are individually optimal, but not “batch optimal”
- Basic problem: writing one item costs 1, but writing \(B \) items together only costs 1, i.e. \(1/B \) per item
- Is there a data structure that gives “batch optimality”?
- Yes, but if inserts/queries are to happen in batches, sometimes you will have to wait for an answer until your batch is big enough

Basic idea:

- Focus on supporting \(N \) inserts and then doing inorder traversal
- Idea: keep buffer in memory, push into \(B \)-tree when we have a block’s worth
- Problem: different items push into different children, no longer a block’s worth going down
- Solution: keep a buffer at each internal node
- Still a problem: writing one item into the child buffer costs 1 instead of \(1/B \)
- Solution: make buffers huge, so most children get whole blocks written

Details:

- make buffer “as big as possible”: size \(M \)
- increase tree degree to \(M/B \)
- basic operation: pushing full buffer down to children
 - bring buffer into memory, sort: cost \(M/B \)
 - 2-way merge with items arriving sorted from above: cost \(1/B \) times number of items
 - write sorted contiguous elements to proper children
 - cost is at most 1 block per child \((M/B)\) plus 1 block per \(B \) items.
 - since at least \(M \) items, account as \(1/B \) per item
- on insert, put item in root buffer (in memory, so free)
• when a buffer is full, flush
• may fill child buffers. flush recursively
• when flush reaches leaves, store items using standard B-tree ops (split leaf nodes, possibly recursing splits)
 – cost of splits dominated by buffer flushing
 – how handle buffers when split? no problem: they are empty because we have just flushed to leaves.
• cost of flushes:
 – buffer flush costs $1/B$ per item
 – but each flushed item descends a level
 – total levels $\log_{M/B} N/B$
 – So cost per item is $(1/B) \log_{M/B} N/B$
 – So cost to insert N is optimal sort cost

Extensions
• Can add delete, range search by storing ops in buffers
• delete “triggers” when it catches up to target item
• range search outputs items when query reaches leaves

“Flush” operation
• empties all buffers so can directly query structure
• full buffers already accounted
• unfull buffers cost M/B per internal node
• but number of internal nodes is $N/(M/B)$
• so total cost N