1 Persistent Data Structures

"Making Data Structures Persistent" by Driscoll, Sarnak, Sleator and Tarjan
Journal of Computer and System Sciences 38(1) 1989

Idea: be able to query and/or modify past versions of data structure.

- ephemeral: changes to struct destroy all past info
- partial persistence: changes to most recent version, query to all past versions
- full persistence: queries and changes to all past versions (creates “multiple worlds” situation)

Goal: general technique that can be applied to any data structure.

Application: planar point location.

- planar subdivision
 - \(n \) segments meeting only at ends
 - defines set of polygons
 - query: “what polygon contains this point”

- numerous special-purpose solutions

- One solution:
 - vertical line through each vertex
 - divides into slabs
 - in slab, segments maintain one vertical ordering
 - find query point slab by binary search
 - build binary search tree for slab with “above-below” queries
 - \(n \) binary search trees, size \(O(n^2) \), time \(O(n^2 \log n) \)

- observation: trees all very similar
- think of \(x \) axis as time, slabs as “epochs”
- at end of epoch, “delete” segments that end, “insert” those that start.
- over all time, only \(n \) inserts, \(n \) deletes.
- must be able to query over all times
Persistent sorted sets:

- find(x, s, t) find (largest key below) x in set s at time t
- insert(i, s, t) insert i in s at time t
- delete(i, s, t).

We use partial persistence: updates only in “present”
Implement via persistent search trees.
Result: $O(n)$ space, $O(\log n)$ query time for planar point location.

2 Persistent Trees

Full copy bad.
Fat nodes method:

- replace each (single-valued) field of data structure by list of all values taken, sorted by time.
- requires $O(1)$ space per data change (unavoidable if keep old date)
- to lookup data field, need to search based on time.
- store values in binary tree
- checking/changing a data item takes $O(\log m)$ time after m updates
- multiplicative slowdown of $O(\log m)$ in structure access.

Path copying:

- much of data structure consists of fixed-size nodes connected by pointers
- can only reach node by traversing pointers starting from root
- changes to a node only visible to ancestors in pointer structure
- when change a node, copy it and ancestors (back to root of data structure
- keep list of roots sorted by update time
- $O(\log m)$ time to find right root (or const, if time is integers) (additive slowdown)
- same access time as original structure
- additive instead of multiplicative $O(\log m)$.
- modification time and space usage equals number of ancestors: possibly huge!

Combined Solution (trees only):
• in each node, store 1 extra time-stamped field
• if full, overrides one of standard fields for any accesses later than stamped time.
• access rule
 – standard access, just check for overrides while following pointers
 – constant factor increase in access time.
• update rule:
 – when need to change/copy pointer, use extra field if available.
 – otherwise, make new copy of node with new info, and recursively modify parent.

• Analysis
 – live node: pointed at by current root.
 – potential function: number of full live nodes.
 – copying a node is free (new copy not full, pays for copy space/time)
 – pay for filling an extra pointer (do only once, since can stop at that point).
 – amortized space per update: \(O(1) \).

Power of twos: Like Fib heaps. Show binary tree of modifications.
Application: persistent trees.
• amortized cost \(O(1) \) to change a field.
• splay tree has \(O(\log n) \) amortized field change per access.
• \(O(\log n) \) space per access!
• drawback: rotations on access mean unbounded space usage.

Red-black trees:
• aggressive rebalancers
• store red/black bit in each node
• use red/black bit to rebalance.
• depth \(O(\log n) \)
• search: standard binary tree search; no changes
• update: causes changes in red/black fields on path to item, \(O(1) \) rotations.
• result: \((\log n) \) space per insert/delete
• geometry does $O(n)$ changes, so $O(n \log n)$ space.

• $O(\log n)$ query time.

Improvement:

• red-black bits used only for updates
• only need current version of red-black bits
• don’t store old versions: just overwrite
• only updates needed are for $O(1)$ rotations
• so $O(1)$ space per update
• so $O(n)$ space overall.

Result: $O(n)$ space, $O(\log n)$ query time for planar point location.

Extensions:

• method extends to arbitrary pointer-based structures.

• $O(1)$ cost per update for any pointer-based structure with any constant indegree. s

• full persistence with same bounds.