Parallel Algorithms
Two closely related models of parallel computation.

Circuits
- Logic gates (AND/OR/not) connected by wires
- Important measures
 - Number of gates
 - Depth (clock cycles in synchronous circuit)

PRAM
- P processors, each with a RAM, local registers
- Global memory of M locations
- Each processor can in one step do a RAM op or read/write to one global memory location
- Synchronous parallel steps
- Not realistic, but explores “degree of parallelism”

Essentially the same models, but let us focus on different things.

Circuits
- Logic gates (AND/OR/not) connected by wires
- Important measures
 - Number of gates
 - Depth (clock cycles in synchronous circuit)
- Bounded vs unbounded fan-in/out
- $AC(k)$ and $NC(k)$: unbounded and bounded fan-in with depth $O(\log^k n)$ for problems of size n
- $AC(k) \subset NC(k) \subset AC(k + 1)$ using full binary tree
- $NC = \bigcup NC(k) = \bigcup AC(k)$

Addition
- Consider adding a_i and b_i with carry c_{i-1} to produce output s_i and next carry c_i
- Ripple carry: $O(n)$ gates, $O(n)$ time
• Carry lookahead: $O(n)$ gates, $O(\log n)$ time
• preplan for late arrival of c_i.
• given a_i and b_i, three possible cases for c_i
 – if $a_i = b_i$, then $c_i = a_i$ determined without c_{i-1}: generate $c_1 = 1$ or kill $c_i = 0$
 – otherwise, propagate $c_i = c_{i-1}$
 – write $x_i = k, g, p$ accordingly
• consider 3×3 “multiplication table” for effect of two adders in a row. pair propagates

<table>
<thead>
<tr>
<th>x_i</th>
<th>x_{i-1}</th>
<th>p</th>
<th>k</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>k</td>
<td>k</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>k</td>
<td>p</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>k</td>
<td>g</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

 previous carry only if both propagate.

• Now let $y_0 = k$, $y_i = y_{i-1} \times x_i$

<table>
<thead>
<tr>
<th>x_i</th>
<th>x_{i-1}</th>
<th>p</th>
<th>k</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>k</td>
<td>k</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>k</td>
<td>never</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>k</td>
<td>g</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

• conclude: $y_i = k$ means $c_i = 0$, $y_i = g$ means $c_i = 1$, and $y_i = p$ never happens
• so problem reduced to computing all y_i in parallel

Parallel prefix
• Build full binary tree
• two gates at each node
• pass up product of all children
• pass down product of all x_i preceding leftmost child
• works for any associative function

PRAM

various conflict resolutions (CREW, EREW, CRCW)

 • $CRCW(k) \subset EREW(k + 1)$
 • $NC = \cup CRCW(k)$

PRAMs simulate circuits, and vice versa
• So NC well-defined

differences in practice
• EREW needs $\log n$ to find max (info theory lower bound)
• CRCW finds max in constant time with n^2 processors
 – Compare every pair
 – If an item loses, write “not max” in its entry
 – Check all entries
 – If item is max (not overwritten), write its value in answer
• in $O(\log \log n)$ time with n processors
 – Suppose k items remain
 – Make k^2/n blocks of n/k items
 – quadratic time max for each: $(k^2/n) (n/k)^2 = n$ processors total
 – recurrence: $T(k) = 1 + T(k^2/n)$
 – $T(n/2^i) = 1 + T(n/2^{2i})$
 – so log log n iters.

parallel prefix
• using n processors

list ranking EREW
• next pointers $n(x)$
 • $d(x+) = d(n(x)); n(x) = n(n(x))$.
• by induction, sum of values on path to end doesn’t change

0.1 Work-Efficient Algorithms

Idea:
• We’ve seen parallel algorithms that are somewhat “inefficient”
• do more total work (processors times time) than sequential
• Ideal solution: arrange for total work to be proportional to best sequential work
• Work-Efficient Algorithm
• Then a small number of processors (or even 1) can “simulate” many processors in a fully efficient way
• Parallel analogue of “cache oblivious algorithm”—you write algorithm once for many processors; lose nothing when it gets simulated on fewer.

Brent’s theorem
• Different perspective on work: count number of processors actually working in each time step.
• If algorithm does x total work and critical path t
• Then p processors take $x/p + t$ time
• So, if use $p = x/t$ processors, finish in time t with efficient algorithm

Work-efficient parallel prefix
• linear sequential work
• going to need $\log n$ time
• so, aim to get by with $n/\log n$ processors
• give each processor a block of $\log n$ items to add up
• reduces problem to $n/\log n$ values
• use old algorithm
• each processor fixes up prefixes for its block

Work-efficient list ranking
• harder: can’t easily give contiguous “blocks” of $\log n$ to each processor (requires list ranking)
• However, assume items in arbitrary order in array of $\log n$ structs, so can give $\log n$ distinct items to each processor.
• use random coin flips to knock out “alternate” items
• shortcut any item that is heads and has tails successor
• requires at most one shortcut
• and constant probability every other item is shortcut (and independent)
• so by chernoff, $1/16$ of items are shortcut out
• “compact” remaining items into smaller array using parallel prefix on array of pointers (ignoring list structure) to collect only “marked” nodes and update their pointers
• let each processor handle $\log n$ (arbitrary) items
• $O(n/\log n)$ processors, $O(\log n)$ time

• After $O(\log \log n)$ rounds, number of items reduced to $n/\log n$

• use old algorithm

• result: $O(\log n \log \log n)$ time, $n/\log n$ processors

• to improve, use faster “compaction” algorithm to collect marked nodes: $O(\log \log n)$ time randomized, or $O(\log n/\log \log n)$ deterministic; get optimal alg.

• How about deterministic algorithm? Use “deterministic coin tossing”

• take all local maxima as part of ruling set.

Euler tour to reduce to parallel prefix for computing depth in tree.

• work efficient

Expression Tree Evaluation: plus and times nodes
Generalize problem:

• Each tree edge has a label (a, b)

• meaning that if subtree below evaluates to y then value $(ay + b)$ should be passed up edge

Idea: pointer jumping

• prune a leaf

• now can pointer-jump parent

• problem: don’t want to disconnect tree (need to feed all data to root!)

• solution: number leaves in-order

• three step process:

 – shunt odd-numbered left-child leaves

 – shunt odd-number right-child leaves

 – divide leaf-numbers by 2

Consider a tree fragment

• method for eliminating all left-child leaves

• root q with left child p (product node) on edge labeled (a_3, b_3)

• p has left child edge (a_1, b_1) leaf ℓ with value v

• right child edge to s with label (a_2, b_2)
• fold out p and ℓ, make s a child of q
• what label of new edge?
• prepare for s subtree to eval to y.
• choose a, b such that $ay + b = a_3 \cdot [(a_1 v + b_1) \cdot (a_2y + b_2)] + b_3$

0.2 Sorting

CREW Merge sort:

• merge to length-k sequences using n processors
• each element of first seq. uses binary search to find place in second
• so knows how many items smaller
• so knows rank in merged sequence: go there
• then do same for second list
• $O(\log k)$ time with n processors
• total time $O(\sum_{i \leq \lg n} \log 2^i) = O(\log^2 n)$

Faster merging:

• Merge n items in A with m in B in $O(\log \log n)$ time
• choose $\sqrt{n} \times \sqrt{m}$ evenly spaced fenceposts α_i, β_j among A and B respectively
• Do all $\sqrt{n}\sqrt{m} \leq n + m$ comparisons
• use concurrent OR to find $\beta_j \leq \alpha_i \leq \beta_j + 1$ in constant time
• parallel compare every α_i to all \sqrt{m} elements in (β_j, β_j+1)
• Now α_i can be used to divide up both A and B into consistent pieces, each with \sqrt{n} elements of A
• So recurse: $T(n) = 2 + T(\sqrt{n}) = O(\log \log n)$

Use in parallel merge sort: $O(\log n \log \log n)$ with n processors.

• Cole shows how to “pipeline” merges, get optimal $O(\log n)$ time.

Connectivity and connected components

Linear time sequential trivial.
Directed

Squaring adjacency matrix

- \(\log n \) time to reduce diameter to 1
- \(mn \) processors for first iter, but adds edges
- so, \(n^3 \) processors
- improvements to \(mn \) processors
- But “transitive closure bottleneck” still bedevils parallel algs.

Undirected

Basic approach:

- Sets of connected vertices grouped as stars
- One root, all others parent-point to it
- Initially all vertices alone
- Edge “live” if connects two distinct stars
- Find live edges in constant time by checking roots
- For live edge with roots \(u < v \), connect \(u \) as child of \(v \)
- May be conflicts, but CRCW resolves
- Now get stars again
 - Use pointer jumping
 - Note: may have chains of links, so need \(\log n \) jumps
- Every live star attached to another
- So number of stars decreases by 2
- \(m + n \) processors, \(\log^2 n \) time.

Smarter: interleave hooking and jumping:

- Maintain set of rooted trees
- Each node points to parent
- Hook some trees together to make fewer trees
- Pointer jump (once) to make shallower trees
• Eventually, each connected component is one star

More details:

• “top” vertex: root or its children
• each vertex has label
• find root label of each top vertex
• Can detect if am star in constant time:
 – no pointer double reaches root
• for each edge:
 – If ends both on top, different components, then hook smaller component to larger
 – may be conflicting hooks; assume CRCW resolves
 – If star points to non-star, hook it
 – do one pointer jump

Potential function: height of live stars and tall trees

• Live stars get hooked to something (star or internal)
• But never hooked to leaf. So add 1 to height of target
• So sum of heights doesn’t go up
• But now, every unit of height is in a tall tree
• Pointer doubling decreases by 1/3
• Total heigh divided each time
• So log \(n \) iterations

Summary: \(O(m + n) \) processors, \(O(\log n) \) time.

Improvements:

• \(O((m + n)\alpha(m, n)/\log n) \) processors, \(\log n \) time, CRCW
• Randomized \(O(\log n), O(m/\log n) \) processors, EREW
0.3 Randomization

Randomization in parallel:

- load balancing
- symmetry breaking
- isolating solutions

Classes:

- NC: poly processor, polylog steps
- RNC: with randomization. polylog runtime, monte carlo
- ZNC: las vegas NC
- immune to choice of R/W conflict resolution

Sorting

Quicksort in parallel:

- \(n \) processors
- each takes one item, compares to splitter
- count number of predecessors less than splitter
- determines location of item in split
- total time \(O(\log n) \)
- combine: \(O(\log n) \) per layer with \(n \) processors
- problem: \(\Omega(\log^2 n) \) time bound
- problem: \(n \log^2 n \) work

Using many processors:

- do all \(n^2 \) comparisons
- use parallel prefix to count number of items less than each item
- \(O(\log n) \) time
- or \(O(n) \) time with \(n \) processors

Combine with quicksort:

- Note: single pivot step inefficient: uses \(n \) processors and \(\log n \) time.
• Better: use \sqrt{n} simultaneous pivots
• Choose \sqrt{n} random items and sort fully to get \sqrt{n} intervals
• For all n items, use binary search to find right interval
 • recurse
 • $T(n) = O(\log n) + T(\sqrt{n}) = O(\log n + \frac{1}{2} \log n + \frac{1}{4} \log n + \cdots) = O(\log n)$

Formal analysis:
• consider root-leaf path to any item x
• argue total number of parallel steps on path is $O(\log n)$
• consider item x
• claim splitter within $\alpha \sqrt{n}$ on each side
• since prob. not at most $(1 - \alpha \sqrt{n}/n)^{\sqrt{n}} \leq e^{-\alpha}$
• fix $\gamma, d < 1/\gamma$
• define $\tau_k = d^k$
• define $\rho_k = n^{(2/3)^k}$ ($\rho_{k+1} = \rho_k^{2/3}$)
• note size ρ_k problem takes $\gamma^k \log n$ time
• note size ρ_k problem odds of having child of size ρ_{k+1} is less than $e^{-\rho_{k,6}^1}$
• argue at most d^k size-ρ_k problems whp
• follows because probability of d^k size-ρ_k problems in a row is at most
• deduce runtime $\sum d^k \gamma_k = \sum (d \gamma)^k \log n = O(\log n)$
• note: as problem shrinks, allowing more divergence in quantity for whp result
• minor detail: “whp” dies for small problems
• OK: if problem size $\log n$, finish in $\log n$ time with $\log n$ processors
Maximal independent set

trivial sequential algorithm

• inherently sequential
• from node point of view: each thinks can join MIS if others stay out
• randomization breaks this symmetry

Randomized idea

• each node joins with some probability
• all neighbors excluded
• many nodes join
• few phases needed

Algorithm:

• all degree 0 nodes join
• node \(v \) joins with probability \(1/2d(v) \)
• if edge \((u, v) \) has both ends marked, unmark lower degree vertex
• put all marked nodes in IS
• delete all neighbors

Intuition: \(d \)-regular graph

• vertex vanishes if it or neighbor gets chosen
• mark with probability \(1/2d \)
• prob (no neighbor marked) is \((1 - 1/2d)^d \), constant
• so const prob. of neighbor of \(v \) marked—destroys \(v \)
• what about unmarking of \(v \)'s neighbor?
• prob(unmarking forced) only constant as argued above.
• So just changes constants
• const fraction of nodes vanish: \(O(\log n) \) phases
• Implementing a phase trivial in \(O(\log n) \).

Prob chosen for IS, given marked, exceeds 1/2
• suppose \(w \) marked, only unmarked if higher degree neighbor marked
• higher degree neighbor marked with prob. \(\leq 1/2d(w) \)
• only \(d(w) \) neighbors
• prob. any superior neighbor marked at most \(1/2 \).

For general case, define good vertices
• good: at least \(1/3 \) neighbors have lower degree
• prob. no neighbor of good marked \(\leq (1 - 1/2d(v))^{d(v)/3} \leq e^{-1/6} \).
• So some neighbor marked with prob. \(1 - e^{-1/6} \)
• Stays marked with prob. \(1/2 \)
• deduce prob. good vertex killed exceeds \((1 - e^{-1/6})/2 \)
• Problem: perhaps only one good vertex?

Good edges
• any edge with a good neighbor
• has const prob. to vanish
• show half edges good
• deduce \(O(\log n) \) iterations.

Proof
• Let \(V_B \) be bad vertices; we count edges with both ends in \(V_B \).
• direct edges from lower to higher degree \(d_i \) is indegree, \(d_o \) outdegree
• if \(v \) bad, then \(d_i(v) \leq d(v)/3 \)
• deduce
\[
\sum_{V_B} d_i(v) \leq \frac{1}{3} \sum_{V_B} d(v) = \frac{1}{3} \sum_{V_B} (d_i(v) + d_o(v))
\]
• so \(\sum_{V_B} d_i(v) \leq \frac{1}{2} \sum_{V_B} d_o(v) \)
• which means indegree can only “catch” half of outdegree; other half must go to good vertices.
• more carefully,
\[
- d_o(v) - d_i(v) \geq \frac{1}{3}(d(v)) = \frac{1}{3}(d_o(v) + d_i(v)).
\]
Let V_G, V_B be good, bad vertices
- degree of bad vertices is
\[
2e(V_B, V_B) + e(V_B, V_G) + e(V_G, V_B) = \sum_{v \in V_B} d_o(v) + d_i(v)
\]
\[
\leq 3 \sum (d_o(v) - d_i(v)) = 3(e(V_B, V_G) - e(V_G, V_B))
\]
\[
\leq 3(e(V_B, V_G) + e(V_G, V_B))
\]
Deduce $e(V_B, V_B) \leq e(V_B, V_G) + e(V_G, V_B)$. Result follows.

Derandomization:
- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- not immediately obvious, but again consider d-uniform case
- prob vertex marked $1/2d$
- neighbors $1, \ldots, d$ in increasing degree order
- Let E_i be event that i is marked.
- Let E'_i be E_i but no E_j for $j < i$
- A_i event no neighbor of i chosen
- Then prob eliminate v at least
\[
\sum \Pr[E'_i \cap A_i] = \sum \Pr[E'_i] \Pr[A_i | E'_i]
\]
\[
\geq \sum \Pr[E'_i] \Pr[A_i]
\]
- Wait: show $\Pr[A_i | E'_i] \geq \Pr[A_i]$
 - true if independent
 - measure $\Pr[\neg A_i | E'_i] \leq \sum \Pr[E_w | E'_i]$ (sum over neighbors w of i)
 - measure
\[
\Pr[E_w | E'_i] = \frac{\Pr[E_w \cap E'_i]}{\Pr[E'_i]}
\]
\[
= \frac{\Pr[(E_w \cap \neg E_1 \cap \cdots) \cap E_i]}{\Pr[\neg E_1 \cap \cdots \cap E_i]}
\]
\[
= \frac{\Pr[E_w \cap \neg E_1 \cap \cdots | E_i]}{\Pr[\neg E_1 \cap \cdots | E_i]}
\]
\[
\leq \frac{1 - \sum_{j \leq i} \Pr[E_j | E_i]}{\Pr[E_w | E_i]}
\]
\[
= \Theta(\Pr[E_w])
\]
(last step assumes \(d\)-regular so only \(d\) neighbors with odds 1/2d)

- But expected marked neighbors 1/2, so by Markov \(\Pr[A_i] > 1/2\)
- so prob eliminate \(v\) exceeds \(\sum \Pr[E_i] = \Pr[\cup E_i]\)
- lower bound as \(\sum \Pr[E_i] - \sum \Pr[E_i \cap E_j] = 1/2 - d(d-1)/8d^2 > 1/4\)
- so 1/2d prob. \(v\) marked but no neighbor marked, so \(v\) chosen
- Generate pairwise independent with \(O(\log n)\) bits
- try all polynomial seeds in parallel
- one works
- gives deterministic \(NC\) algorithm

with care, \(O(m)\) processors and \(O(\log n)\) time (randomized)

LFMIS \(P\)-complete.

Perfect Matching

We focus on bipartite; book does general case.
Last time, saw detection algorithm in \(RNC\):

- Tutte matrix
- Symbolic determinant nonzero iff PM
- assign random values in 1, \ldots, 2m
- Matrix Mul, Determinant in \(NC\)

How about finding one?

- If unique, no problem
- Since only one nonzero term, ok to replace each entry by a 1.
- Remove each edge, see if still PM in parallel
- multiplies processors by \(m\)
- but still \(NC\)

Idea:

- make unique minimum **weight** perfect matching
- find it

Isolating lemma: [MVV]
• Family of distinct sets over \(x_1, \ldots, x_m \)
• assign random weights in \(1, \ldots, 2m \)
• \(\Pr(\text{unique min-weight set}) \geq 1/2 \)
• Odd: no dependence on number of sets!
• (of course < \(2^m \))

Proof:
• Fix item \(x_i \)
• \(Y \) is min-value sets containing \(x_i \)
• \(N \) is min-value sets not containing \(x_i \)
• true min-sets are either those in \(Y \) or in \(N \)
• how decide? Value of \(x_i \)
• For \(x_i = -\infty \), min-sets are \(Y \)
• For \(x_i = +\infty \), min-sets are \(N \)
• As increase from \(-\infty\) to \(\infty \), single transition value when both \(X \) and \(Y \) are min-weight
• If only \(Y \) min-weight, then \(x_i \) in every min-set
• If only \(X \) min-weight, then \(x_i \) in no min-set
• If both min-weight, \(x_i \) is ambiguous
• Suppose no \(x_i \) ambiguous. Then min-weight set unique!
• Exactly one value for \(x_i \) makes it ambiguous given remainder
• So \(\Pr(\text{ambiguous}) = 1/2m \)
• So \(\Pr(\text{any ambiguous}) < m/2m = 1/2 \)

Usage:
• Consider tutte matrix \(A \)
• Assign random value \(2^{w_i} \) to \(x_i \), with \(w_i \in 1, \ldots, 2m \)
• Weight of matching is \(2^{\Sigma w_i} \)
• Let \(W \) be minimum sum
• Unique w/pr 1/2
• If so, determinant is odd multiple of 2^W
• Try removing edges one at a time
• Edge in PM iff new determinant/2^W is even.
• Big numbers? No problem: values have poly number of bits

NC algorithm open.
For exact matching, P algorithm open.