1 Buckets

Cherkassky, Goldberg, and Silverstein. SODA 97. review shortest path algorithm.
In shortest paths, often have edge lengths small integers (say max C).
Observe heap behavior:

- heap min increasing (monotone property)
- max C distinct values
- (because don’t insert $k + C$ until delete k).

Idea: lots of things have same value. Keep in buckets.
How to exploit?

- standard heaps of buckets. $O(m \log C)$ (slow) or $O(m + n \log C)$ with Fib (messy).
- Dial’s algorithm: $O(m + nC)$.

space?

- use array of size $C + 1$
- wrap around

2-level buckets.
Tries.

- depth k tree over array of size Δ
- depth k
- expansion factor $\Delta = (C + 1)^{1/k}$ (power of 2 simplifies)
- insert: $O(k)$ (also find, delete-non-min, decrease-key)
- delete-min: $O(k\Delta) = O(kC^{1/k})$ to find next element
- Shortest paths: $O(km + knC^{1/k})$
- Balance: $nC^{1/k} = m$ so $C = (m/n)^k$ so $k = \log(C)/\log(m/n)$
- Runtime: $m \log_{m/n}(C)$
- Space: $kn = n \log_{m/n} C$

Problems: space and time
Idea: be lazy!

- unique array on each level active
- keep other stuff piled up in list
• expand to buckets when reach
• each item descends one level per touch, never ascends
• charge to insert, pay for other ops by pushing items down
• In delete, need to traverse exactly one level to find next nonempty item
• (may also do pushdowns, but those are paid for)
• space to linear
• New time analysis:
 – $O(k)$ insert
 – $O(C^{1/k})$ delete
 – $O(1)$ decrease key
• paths runtime: $O(m + n(k + C^{1/k})) = O(m + n(\log C)/\log \log C)$
• Further improvement: heap on top (HOT) queues get $O(m + n(\log C)^{1/3})$ time
• Implementation experiments—good model for project

2 VEB

Idea

• idea: in bucket heaps, problem of finding next empty bucket was heap problem. Recurse!
• b-bit words
• $\log b$ running times
• thorup paper improves to $\log \log n$
• consequence for sorting.

Algorithm.

• need constant time hash table. non-trivial complexity theory, but can manage with randomization or slight time loss.
• queue Q on b bits is struct
 – Q.min is current min, not stored recursively
- Array $Q.low[]$ of \sqrt{n} queues on low order bits in bucket
- $Q.high$, vEB queue on high order bits of elements other than current min in queue

• Insert x:
 - if $x < Q.min$, swap
 - now insert x in recursive structs
 - expand $x = (x_h, x_l)$ high and low half words
 - If $Q.low[x_h]$ nonempty, then insert x_l in it
 - else, make new queue holding x_l at $Q.low[x_h]$, and insert x_h in $Q.high$
 - note two inserts, but one to an empty queue, so constant time

• Delete-min:
 - need to replace $Q.min$
 - Look in $Q.high$.min. if null, queue is empty.
 - else, gives first nonempty bucket x_h
 - Delete min from $Q.low[x_h]$ to finish finding $Q.min$
 - If results in empty queue, Delete-min from $Q.high$ to remove that bucket from consideration
 - Note two delete mins, but second only happens when first was constant time.