1. Consider the following optimization problem:

 Given \(c \in \mathbb{R}^n \), \(c \geq 0 \), \(n \) even, find

 \[
 \min \{ c^T x : \sum_{i \in S} x_i \geq 1 \quad \forall S \subset \{1, \ldots, n\}, |S| = \frac{n}{2}, \quad x_j \geq 0 \quad \forall j \}.
 \]

 In class, it was shown that this can be solved by the ellipsoid method because there is an efficient separation algorithm. However, this problem has a more straightforward solution.

 Develop an algorithm which finds the optimum in \(O(n \log n) \) time. Prove its correctness.

2. Fill a gap in the analysis of the interior point algorithm:

 Suppose that \((x, y, s)\) is a feasible vector, i.e. \(x > 0 \), \(s > 0 \),

 \[
 A x = b,
 \]

 \[
 A^T y + s = c
 \]

 and we perform one Newton step by solving for \(\Delta x, \Delta y, \Delta s \):

 \[
 A \Delta x = 0
 \]

 \[
 A^T \Delta y + \Delta s = 0
 \]

 \[
 \forall j; \quad x_j s_j + \Delta x_j s_j + x_j \Delta s_j = \mu
 \]

 where \(\mu > 0 \). The proximity function is defined as

 \[
 \sigma(x, s, \mu) = \sqrt{\sum_j \left(\frac{x_j s_j}{\mu} - 1 \right)^2}.
 \]

 Prove that if

 \[
 \sigma(x + \Delta x, s + \Delta s, \mu) < 1
 \]

 then \((x + \Delta x, y + \Delta y, s + \Delta s)\) is a feasible vector for \(A x = b, x > 0 \) and \(A^T y + s = c, s > 0 \).
3. Given a directed graph \(G = (V, E) \) and two vertices \(s \) and \(t \), we would like to find the maximum number of edge-disjoint paths between \(s \) and \(t \) (two paths are edge-disjoint if they don’t share an edge). Denote the number of vertices by \(n \) and the number of edges by \(m \).

(a) Argue that this problem can be solved as a maximum flow problem with unit capacities. Explain.

(b) Consider now the maximum flow problem on directed graphs \(G = (V, E) \) with unit capacity edges (although some of the questions below would also apply to the more general case).

Given a feasible flow \(f \), we can construct the residual network \(G_f = (V, E_f) \) where

\[
E_f = \{ (i, j) : ((i, j) \in E \land f_{ij} < u_{ij}) \lor ((j, i) \in E \land f_{ji} > 0) \}\text{.}
\]

The residual capacity of an edge \((i, j) \in E_f\) is equal to \(u_{ij} - f_{ij} \) or \(f_{ji} \) depending on the case above. Since we are dealing with the unit capacity case, all the \(u_{ij}'s \) are 1 and therefore for \(0-1 \) flows \(f \) (i.e. flows for which the value on any edge is 0 or 1), all residual capacities will be 1.

We define the distance of a vertex \(l_f(v) \) as the length of the shortest path from \(s \) to \(v \) in \(E_f \) (\(\infty \) for vertices which are not reachable from \(s \) in \(E_f \)). Further, define the levelled residual network as

\[
E^l_f = \{ (i, j) \in E_f : l_f(j) = l_f(i) + 1 \}\text{.}
\]

and a saturating flow \(g \) in \(E^l_f \) as a flow in \(E^l_f \) (with capacities being the residual capacities) such that every directed \(s-t \) path in \(E^l_f \) has at least one saturated edge (i.e. an edge whose flow equals the residual capacity).

For a unit capacity graph and a given \(0-1 \) flow \(f \), show how we can find the levelled residual network and a saturating flow in \(O(m) \) time.

(c) Prove that if the levelled residual network has no path from \(s \) to \(t \) (\(l_f(t) = \infty \)), then the flow \(f \) is maximum.

(d) For a flow \(f \), define

\[
d(f) = l_f(t)
\]

(the distance from \(s \) to \(t \) in the residual network). Prove that if \(g \) is a saturating flow for \(f \) then

\[
d(f + g) > d(f),
\]

where \(f + g \) denotes the flow obtained from \(f \) by either increasing the flow \(f_{ij} \) by \(g_{ij} \) or decreasing the flow \(f_{ji} \) by \(g_{ij} \) for every edge \((i, j) \in G_f\).
(e) Prove that if \(f \) is a feasible 0–1 flow with distance \(d = d(f) \) and \(f^* \) is an optimum flow, then

\[
\text{value}(f^*) \leq \text{value}(f) + \frac{\sigma}{d}
\]

and also

\[
\text{value}(f^*) \leq \text{value}(f) + \frac{n^2}{d^2}.
\]

(f) Design a maximum flow algorithm (for unit capacities) which proceeds by finding a saturating flow repeatedly. Try to optimize its running time. Using the observations above, you should achieve a running time bounded by \(O(\min(mn^{2/3}, m^{3/2})) \).

(g) Can we now justify that, for 0–1 capacities, there is always an optimum flow that takes values 0 or 1 on every edge?