1. In the bin packing problem, we are given \(n \) items, item \(i \) being of length \(a_i \) \((0 < a_i \leq 1)\), and we need to find the minimum number of bins of length 1 so that no bin contains items whose total length exceeds 1. This problem is NP-hard. Consider the following heuristic, called "First Fit" (FF): Consider the items in any order and place each item into the first bin that still has room for it. Let \(L^* \) denote the minimum number of bins needed and let \(L_{FF} \) be the number of bins obtained by using First Fit.

(a) Show that \(L_{FF} \leq 2L^* - 1 \) for any instance.

(b) Show that \(L_{FF} \leq \alpha L^* + \beta \) for some \(\alpha < 2 \). The best possible answer is \(\alpha = 1.7 \) and \(\beta = 2 \), but this is somewhat tricky to show (or supposedly tricky: you might have an easy argument).

Hint to get \(\alpha = 1.75 \) in case you don’t have any other idea. Consider three types of bins in the packing obtained by FF. \(B_1 \) consists of the bins containing items of total length greater than \(2/3 \), \(B_2 \) consists of the bins not in \(B_1 \) containing one item of length greater than 0.5 (and possibly other items) and \(B_3 \) consists of the remaining bins. Show first that \(|B_3| \leq 2 \).

2. Consider the following problem. Given a collection \(\mathcal{F} \) of subsets of \(\{1, \ldots, n\} \) and an integer \(k \), find \(k \) sets \(S_1, \ldots, S_k \) in \(\mathcal{F} \) such that \(|S_1 \cup S_2 \cup \ldots \cup S_k| \) is maximum. This problem is NP-hard. The greedy algorithm first chooses \(S_1 \) to be the largest set, and then having constructed \(S_1, \ldots, S_{i-1} \) chooses \(S_i \) to be the set that maximizes

\[
|S_i \setminus \bigcup_{j=1}^{i-1} S_j|.
\]

Show that the greedy algorithm is a \(1 - \left(1 - \frac{1}{k}\right)^k \)-approximation algorithm.

(Hint: You may want to show that, for any \(j \), the union of the first \(j \) sets given by the greedy algorithm have a cardinality at least

\[
1 - \left(1 - \frac{1}{k}\right)^j \text{OPT},
\]

where \(\text{OPT} \) denotes the maximum cardinality of the union of \(k \) sets.)

3. In MAX 2SAT, we are given a collection \(C_1, \ldots, C_k \) of boolean clauses with at most two literals per clause. Each clause is thus either a literal or the disjunction of two literals drawn from a set of variables \(\{x_1, x_2, \ldots, x_n\} \). A literal is either
a variable x or its negation \bar{x}. The goal is to find an assignment of truth values to the variables x_1, \ldots, x_n that maximizes the number of satisfied clauses.

(a) Show that the algorithm which independently sets every x_i to true with probability 0.5 is a randomized 0.5-approximation algorithm. (As usual, compute the expected number of satisfied clauses.)

(b) Consider the following linear program:

$$\text{Max} \sum_{j=1}^{k} z_j$$

subject to:

$$(LP) \quad \sum_{i \in I_j^+} y_i + \sum_{i \in I_j^-} (1 - y_i) \geq z_j \quad j = 1, \ldots, k$$

$$0 \leq y_i \leq 1 \quad 1 \leq i \leq n$$

$$0 \leq z_j \leq 1 \quad j = 1, \ldots, k,$$

where I_j^+ (resp. I_j^-) denotes the set of variables appearing unnegated (resp. negated) in C_j. For example, the clause $x_3 \lor \bar{x}_5$ would give rise to the constraint $y_3 + 1 - y_5 \geq z_j$.

i. Show that the optimum value of this linear program is an upper bound on the optimum value of MAX 2SAT.

ii. Let y^*, z^* denote the optimum solution of this linear program. Show that the algorithm which independently sets every x_i to true with probability y_i^* is a randomized 0.75-approximation algorithm.

(c) Consider now an approach similar to the one described in class for MAX CUT. Define a unit vector v_0 corresponding to “true” and also a unit vector v_i for each variable x_i. Define the “value” of the clause or literal x_i as $v(x_i) = \frac{1+v_0+v_i}{2}$ and the value of \bar{x}_i as $v(\bar{x}_i) = \frac{1-v_0-v_i}{2}$. Observe that $v(x_i)$ is 1 if $v_0 = v_i$, 0 if $v_0 = -v_i$, and between 0 and 1 otherwise. For a clause with two literals, say $C = x_1 \lor x_2$, define $v(C)$ as $(3+v_0+v_1+v_0+v_2-v_1-v_2)/4$. The value of other clauses with two literals are similarly defined. Consider now the nonlinear program:

$$\text{Maximize} \sum_{j=1}^{k} v(C_j)$$

$$(NLP) \quad \text{subject to: } v_i \in S_n \quad i = 0, 1, \ldots, n.$$

i. Show that the optimum value of this nonlinear program is an upper bound on the optimum value of MAX 2SAT.

PS5-2
ii. Consider the algorithm which first solves this nonlinear program optimally, then generates a uniformly selected point \(r \) on the unit sphere \(S_n \), and sets \(x_i \) to be true if \((v_0 \cdot r)(v_i \cdot r) \geq 0\). Using the analysis of the MAX CUT algorithm seen in class, show that this algorithm is a randomized 0.878-approximation algorithm for MAX 2SAT.

(d) Can you do better than 0.878?