1. Consider the following optimization problem:

Given \(c \in \mathbb{R}^n, c \geq 0, n \text{ even}, \) find

\[
\min \{ c^T x : \sum_{i \in S} x_i \geq 1 \quad \forall S \subseteq \{1, \ldots, n\}, |S| = \frac{n}{2}, \\
x_j \geq 0 \quad \forall j \}.
\]

In class, it was shown that this can be solved by the ellipsoid method because there is an efficient separation algorithm. However, this problem has a more straightforward solution.

Develop an algorithm which finds the optimum in \(O(n \log n) \) time. Prove its correctness.

Let

\[P = \{ x \geq 0 : \sum_{i \in S} x_i \geq 1, \forall S \subseteq [n]; |S| = \frac{n}{2} \}. \]

We would like to describe the structure of \(P \), which is an unbounded polyhedron. We prove that \(x \in P \) exactly when \(x \) can be written as

\[x = \sum_{A \subseteq [n]} \lambda_A \chi_A \]

where \(\chi_A \) denotes the characteristic vector of \(A \), \(\lambda_A \geq 0 \), and additionally

\[(\ast) \quad \sum_{|A| > n/2} (|A| - \frac{n}{2}) \lambda_A \geq 1. \]

First, suppose \(x \) satisfies this and consider \(S \) of size \(n/2 \). Any set \(A \) of size \(|A| > n/2 \) intersects \(S \) in at least \(|A| - n/2 \) elements, therefore

\[
\sum_{i \in S} x_i = \sum_{i \in S} \sum_{A : i \in A} \lambda_A = \sum_{A} |A \cap S| \lambda_A \geq \sum_{A : |A| > n/2} (|A| - \frac{n}{2}) \lambda_A \geq 1.
\]

Conversely, let \(x \in P \). Let \(\pi \) be a permutation such that

\[x_{\pi(1)} \leq x_{\pi(2)} \leq \ldots \leq x_{\pi(n)}. \]

PSS3-1
Set
\[\lambda_1 = x_{\pi(1)} \]
\[\lambda_k = x_{\pi(k)} - x_{\pi(k-1)} \]
and
\[A_k = \{\pi(k), \pi(k+1), \ldots, \pi(n)\} \]
for \(k = 1 \ldots n \). Then obviously \(\lambda_k \geq 0 \) and
\[x = \sum_{k=1}^{n} \lambda_k \chi_{A_k}. \]

Finally, we verify condition (\(*\)):
\[
\sum_{|A| > n/2} \left(|A| - \frac{n}{2} \right) \lambda_A = \sum_{k=1}^{n/2} \left(|A_k| - \frac{n}{2} \right) \lambda_k = \left(\frac{n}{2} \right) x_{\pi(1)} + \left(\frac{n}{2} - 1 \right) \left(x_{\pi(2)} - x_{\pi(1)} \right)
+ \left(\frac{n}{2} - 2 \right) \left(x_{\pi(3)} - x_{\pi(2)} \right) + \ldots + \left(x_{\pi(n/2)} - x_{\pi(n/2-1)} \right) = \sum_{k=1}^{n/2} x_{\pi(k)} \geq 1.
\]

Now we can optimize over \(P \) much more easily. First, observe that for any optimal solution
\[x^* = \sum_{A} \lambda_A \chi_A, \]
we can assume \(\lambda_A = 0 \) for \(|A| \leq n/2 \) and
\[
\sum_{|A| > n/2} \left(|A| - \frac{n}{2} \right) \lambda_A = 1,
\]
otherwise we decrease the coefficients until the equality holds. This won’t increase the objective function \(\sum c_i x_i \), since \(c \geq 0 \). Therefore an optimal solution always exists in the convex hull of \(\{p_A : |A| > n/2\} \) where
\[
p_A = \frac{1}{|A| - n/2} \chi_A.
\]

We could evaluate the objective function at all these points but there are still too many of them. However, we can notice that for a given \(k = |A| \), the only candidate for an optimum \(p_A \) is the set \(A \) which contains the \(k \) smallest components of \(c \). Therefore the algorithm is the following:

- Sort the components of \(c \) and let \(A_k \) denote the indices of the \(k \) smallest components of \(c \), for each \(k > n/2 \). This takes \(O(n \log n) \) time.
• For each $k > n/2$, calculate $s_k = \sum_{i \in A_k} c_k$. This can be done in $O(n)$ time, because the sets A_k form a chain and we can use s_k to calculate s_{k+1} in constant time.

• Find the smallest value of

$$c^T p_{A_k} = \frac{s_k}{k - n/2}$$

for $k > n/2$. Return this as the optimum.

The algorithm runs in $O(n \log n)$ time and its correctness follows from the analysis above.

2. Fill a gap in the analysis of the interior point algorithm:

Suppose that (x, y, s) is a feasible vector, i.e. $x > 0$, $s > 0$,

$$Ax = b,$$

$$A^Ty + s = c$$

and we perform one Newton step by solving for $\Delta x, \Delta y, \Delta s$:

$$A\Delta x = 0$$

$$A^T \Delta y + \Delta s = 0$$

$$\forall j; \quad x_j s_j + \Delta x_j s_j + x_j \Delta s_j = \mu$$

where $\mu > 0$. The proximity function is defined as

$$\sigma(x, s, \mu) = \sqrt{\sum_j \left(\frac{x_j s_j}{\mu} - 1 \right)^2}.$$

Prove that if

$$\sigma(x + \Delta x, s + \Delta s, \mu) < 1$$

then $(x + \Delta x, y + \Delta y, s + \Delta s)$ is a feasible vector for $Ax = b, x > 0$ and $A^T y + s = c, s > 0$.

The equalities are satisfied directly by the assumptions:

$$A(x + \Delta x) = Ax + A\Delta x = b$$

$$A^T (y + \Delta y) + (s + \Delta s) = (A^T y + s) + (A^T \Delta y + \Delta s) = c.$$

We have to verify the positivity conditions. First we prove that at least one of $x_j + \Delta x_j, s_j + \Delta s_j$ is positive. We have $x_j > 0, s_j > 0$ and

$$x_j s_j + \mu = 2x_j s_j + \Delta x_j s_j + x_j \Delta s_j = (x_j + \Delta x_j) s_j + x_j (s_j + \Delta s_j) > 0$$

PSS3-3
therefore either $x_j + \Delta x_j$ or $s_j + \Delta s_j$ must be positive.

Second, we use the proximity condition:

$$\left(\sigma(x + \Delta x, s + \Delta s, \mu)\right)^2 = \sum_j \left(\frac{(x_j + \Delta x_j)(s_j + \Delta s_j)}{\mu} - 1\right)^2 < 1.$$

In particular, for each j

$$\frac{(x_j + \Delta x_j)(s_j + \Delta s_j)}{\mu} > 0$$

which means that $x_j + \Delta x_j$ and $s_j + \Delta s_j$ have the same sign. We know they can’t be negative so they must be positive.

3. Given a directed graph $G = (V, E)$ and two vertices s and t, we would like to find the maximum number of edge-disjoint paths between s and t (two paths are edge-disjoint if they don’t share an edge). Denote the number of vertices by n and the number of edges by m.

(a) Argue that this problem can be solved as a maximum flow problem with unit capacities. Explain.

Let F be a union of k edge-disjoint paths from s to t. We define a flow of value k in a natural way - an edge gets a flow of value 1 if it is contained in F and and 0 otherwise. Since each path enters and exits any vertex (except s and t) the same number of times, flow conservation holds. The value of the flow is the number of edges in F leaving s (or entering t) which is k.

Conversely, let f be the maximum flow with unit capacities. As we shall prove, there is always a $0-1$ maximum flow, therefore we can assume that f_{ij} is either 0 or 1 for each edge. Let

$$F = \{(i, j) \in E : f_{ij} = 1\}$$

and k be the value of the flow. Then we can decompose F into k edge-disjoint paths in the following way: We start from s and follow a path of edges in F until we hit t. (This is possible due to flow conservation.) When we have found such a path, we remove it from F and consider the remaining flow of value $k - 1$. By induction, we find exactly k such paths.

(b) Consider now the maximum flow problem on directed graphs $G = (V, E)$ with unit capacity edges (although some of the questions below would also apply to the more general case).

Given a feasible flow f, we can construct the residual network $G_f = (V, E_f)$ where

$$E_f = \{(i, j) : ((i, j) \in E \& f_{ij} < u_{ij}) \text{ or } ((j, i) \in E \& f_{ji} > 0)\}.$$
The residual capacity of an edge \((i, j) \in E_f\) is equal to \(u_{ij} - f_{ij}\) or to \(f_{ji}\) depending on the case above. Since we are dealing with the unit capacity case, all the \(u_{ij}\)'s are 1 and therefore for 0–1 flows \(f\) (i.e. flows for which the value on any edge is 0 or 1), all residual capacities will be 1.

We define the distance of a vertex \(l_f(v)\) as the length of the shortest path from \(s\) to \(v\) in \(E_f\) (\(\infty\) for vertices which are not reachable from \(s\) in \(E_f\)). Further, define the **levelled residual network** as

\[
E_f^l = \{(i, j) \in E_f : l_f(j) = l_f(i) + 1\}
\]

and a **saturating flow** \(g\) in \(E_f^l\) as a flow in \(E_f^l\) (with capacities being the residual capacities) such that every directed \(s-t\) path in \(E_f^l\) has at least one saturated edge (i.e. an edge whose flow equals the residual capacity).

For a unit capacity graph and a given 0–1 flow \(f\), show how we can find the levelled residual network and a saturating flow in \(O(m)\) time.

First, we can find \(E_f\) in \(O(m)\) time simply by testing each edge and adding the edge or its reverse to \(E_f\), depending on the current flow. Then we can label the vertices by \(l_f(v)\) by a breadth-first search from \(s\). This takes time \(O(m)\), also. At the same time we find \(d(f)\) as the length of the shortest path from \(s\) to \(t\).

Then, we create \(E_f^l\) by keeping only the edges between successive levels. Thus all paths between \(s\) and \(t\) in \(E_f^l\) have length \(d(f)\). Now we produce flow \(g\) by finding as many edge-disjoint \(s-t\) paths as possible. We start with \(E' = E_f^l\) and we perform a depth-first search from \(s\). If we get stuck, we backtrack and remove edges on the dead-end branches since these are not in any \(s-t\) path anyway. When we find an \(s-t\) path, we set \(g_{ij} = 1\) along that path, and remove it from \(E'\). We continue searching for paths until \(E'\) is empty. We spend a constant time on each edge before it’s removed, which is \(O(m)\) time total. When we are done, there is no \(s-t\) path in \(E_f^l\) without a saturated edge, otherwise it would still be in \(E'\).

(c) **Prove that if the levelled residual network has no path from \(s\) to \(t\) (\(l_f(t) = \infty\)), then the flow \(f\) is maximum.**

Suppose there is a flow \(f^*\) of greater value. Then \(f^* - f\) (where the difference is produced by either decreasing flow along an edge and increasing flow in the opposite direction) is a feasible flow in the residual network which has a positive value. This is easy to see because if \(f^*_{ij} > f_{ij}\) then \((i, j)\) appears in \(E_f\) and \(f^*_{ij} - f_{ij} \leq u_{ij} - f_{ij}\) which is the capacity of this edge in \(E_f\). If \(f^*_{ij} < f_{ij}\), then \(f_{ij} > 0\) and therefore the opposite edge \((j, i)\) appears in \(E_f\). Also, \(f_{ij} - f^*_{ij} \leq f_{ij}\) which is the capacity of \((j, i)\) in \(E_f\).
When a non-zero flow exists in E_f, there exists a path from s to t using only edges in E_f. The shortest of these paths would appear in E_f as well, which is a contradiction.

(d) For a flow f, define

$$d(f) = l_f(t)$$

(the distance from s to t in the residual network). Prove that if g is a saturating flow for f then

$$d(f + g) > d(f),$$

where $f + g$ denotes the flow obtained from f by either increasing the flow f_{ij} by g_{ij} or decreasing the flow f_{ji} by g_{ij} for every edge $(i, j) \in G_f$.

Consider E_f and the labeling of vertices $l_f(v)$. For every edge (i, j) of E_f we have that $l_f(j) \leq l_f(i) + 1$. Since g is a saturating flow in E_f, the only edges (u, v) which are in E_{f+g} and not in E_f are such that $(v, u) \in E_f$, which implies that $l_f(v) = l_f(u) - 1$. In summary, every edge (i, j) of E_{f+g} satisfies $l_f(j) \leq l_f(i) + 1$ and, furthermore, the edges which are not in E_f actually satisfy the inequality strictly $l_f(j) < l_f(i) + 1$. Consider now any path P in E_{f+g}. Adding up $l_f(j) < l_f(i) + 1$ over the edges of P, we get that $d(f) \leq |P|$. Moreover, we can have $d(f) = |P|$ only if all edges of P also belong to E_f, which is impossible since g is a saturating flow. Hence, $d(f) < |P|$ and this is true for any path P of E_{f+g} implying that $d(f) < d(f + g)$.

(e) Prove that if f is a feasible $0-1$ flow with distance $d = d(f)$ and f^* is an optimum flow, then

$$\text{value}(f^*) \leq \text{value}(f) + \frac{m}{d}$$

and also

$$\text{value}(f^*) \leq \text{value}(f) + \frac{n^2}{d^2}.$$

Suppose f has distance d and f^* is an optimal flow. As noted before, $g = f^* - f$ is a feasible flow in the residual network E_f.

Consider s-t cuts C_1, C_2, \ldots, C_d defined by

$$C_k = \{(i, j) \in E_f : l_f(i) \leq k, l_f(j) > k\}.$$

There are at most m edges in total and these cuts are disjoint, therefore

$$\exists k; |C_k| \leq \frac{m}{d}.$$
Since the value of g cannot be greater than any $s-t$ cut in E_f,

$$\text{value}(f^*) - \text{value}(f) = \text{value}(g) \leq \frac{m}{d}.$$

Similarly, define $d + 1$ sets of vertices $V_0, V_1, V_2, \ldots, V_d$:

$$V_k = \{i \in V : l_f(i) = k\}.$$

By double counting,

$$\exists k, 1 \leq k \leq n; |V_{k-1} \cup V_k| \leq \frac{2n}{d}.$$

Suppose that $|V_{k-1}| = a$, $|V_k| \leq \frac{2n}{d} - a$. Note that the edges of C_k belong to $V_{k-1} \times V_k$. Therefore

$$\text{value}(f^*) - \text{value}(f) = \text{value}(g) \leq |C_k| \leq a\left(\frac{2n}{d} - a\right) \leq \frac{n^2}{d^2}.$$

(f) **Design a maximum flow algorithm** (for unit capacities) which proceeds by finding a saturating flow repeatedly. Try to optimize its running time. Using the observations above, you should achieve a running time bounded by $O(\min(mn^{2/3}, m^{3/2}))$.

The algorithm starts with a zero flow f. Then we repeat the following:

- Find the levelled residual network E_f^*.
- Find a saturating flow g.
- Add g to f, reset the residual network and continue.

Each iteration takes $O(m)$ time. Since $d(f)$ increases every time and it cannot reach more than n (the maximum possible distance in G), the running time is clearly bounded by $O(mn)$. However, we can improve this. Suppose we iterate only d times and our flow after d iterations is f. We know $d(f) \geq d$, and if f^* is an optimal flow,

$$\text{value}(f^*) - \text{value}(f) \leq \min\{\frac{m}{d}, \frac{n^2}{d^2}\}.$$

Because the flow increases by at least 1 in each iteration, the remaining number of iterations is bounded by $\min\{\frac{m}{d}, \frac{n^2}{d^2}\}$. We choose d in order to optimize our bound. It turns out that the best choice is $d_1 = m^{1/2}$ for the bound based on m and $d_2 = n^{2/3}$ for the bound based on n. Thus the total running time is $O(\min(m^{3/2}, mn^{2/3}))$.

(g) **Can we now justify that, for $0-1$ capacities, there is always an optimum flow that takes values 0 or 1 on every edge?**

Our algorithm finds a $0-1$ flow and we have a proof of optimality, therefore there is always a $0-1$ optimal flow. This justifies our reasoning in part (a).