1 Minimum Cost Circulation Problem

Theorem 1 Let f be a circulation. The following are equivalent:

(i) f is of minimum cost.

(ii) G_f has no negative cost directed cycles.

(iii) $\exists p: c_p(v, w) \geq 0 \ \forall (v, w) \in E_f$, where $c_p(v, w) = c(v, w) + p(v) - p(w)$.

Proof: $i \Rightarrow ii$ and $iii \Rightarrow i$ were proven last lecture. All that remains is the proof of $ii \Rightarrow iii$:

Let G' be obtained from the residual graph G_f by adding a vertex s linked to all other vertices by edges of cost 0 (the costs of these edges do not matter). Let $p(v)$ be the length of the shortest path from s to v in G' with respect to the costs. These quantities are well-defined since G_f does not contain any negative cost directed cycles, and every vertex is reachable from s. By definition of the shortest paths, $p(w) = p(u) + c(u, w) \ \forall (v, w) \in E_f$.

This implies that $c_p(v, w) > 0 \ \forall (v, w) \in E_f$. \hfill \Box

2 Klein’s Algorithm for MCCP

Klein’s Cycle canceling algorithm:

1. Let f be any circulation.

2. While G_f contains a negative cycle Γ do

 push $\delta = \min_{(v, w) \in \Gamma} u_f(v, w)$ along Γ.

Argument for Correctness:

If the algorithm terminates, then the circulation found must be optimum. Furthermore, if all capacities and costs are integers, then the algorithm will terminate.

Why?

- $f(v, w)$ is always an integer, thus $\delta = \min_{(v, w) \in \Gamma} u_f(v, w) \geq 1$

- If $|c(v, w)| \leq C$ and $|f(v, w)| \leq U$, then the absolute value of the cost of the optimal circulation is at most mCU

Therefore, the algorithm terminates after $O(mCU)$ iterations.

Remark 1 If the edge capacities in the graph are irrational, then the algorithm is not correct.

The cycle canceling algorithm can be applied to the Max-Flow Problem by making appropriate modifications to the graph G. Let G' be obtained by setting the cost of all edges within G to 0. Furthermore, select two vertices s and t from within the graph, and add the directed edges (s, t) and (t, s), where $c(s, t) = 1, c(t, s) = -1$ and both edges have infinite capacity. Now, solving for
the maximum flow between s to t is equivalent to solving for the minimum cost circulation, which contains s and t. In this circumstance, Klein’s Algorithm reduces to the Ford-Fulkerson Algorithm.

Ford-Fulkerson Augmenting Path Algorithm:

1. Begin with zero flow: $f = 0$.
2. While G_f contains a directed path P from s to t do
 push $\delta = \min_{(v, w) \in P} u_f(v, w)$ along P.

The running time given above for Klein’s Cycle-Canceling Algorithm is not polynomial. The negative cost cycle in Klein’s Algorithm (or the directed path in the Ford-Fulkerson Algorithm) must be chosen appropriately to insure a polynomial running time.

Candidates for Cycles in Klein’s Algorithm:

1. The most negative cost cycle in G_f?
 Finding this cycle is an NP-Hard problem, so it would not be a viable choice.

2. The negative cycle in G_f which would yield the maximum cost improvement?
 Finding this cycle is again an NP-Hard problem.
 However for the Max-Flow Problem, this choice reduces to finding the st-path with maximum residual capacity. Such a path can be found in $O(m)$ time, $m = |E|$. The resulting Max-Flow algorithm is known as the “fattest” path algorithm (Edmonds-Karp ’72). The number of iterations necessary is $O(m \log U)$, thus the running of the algorithm is $O(m^2 \log U)$.

3. Minimum Mean-Cost Cycle?
 Define the mean cost of a cycle Γ to be:
 \[
 \mu(f) = \min_{\text{cycles} \Gamma \in G_f} \frac{c(\Gamma)}{|\Gamma|}
 \] (1)
 where $|\Gamma|$ denotes the number of edges in Γ. The minimum mean cost of all cycles of the residual graph G_f would thus be:
 \[
 \mu(f) = \min_{\text{cycles} \Gamma \in G_f} \frac{c(\Gamma)}{|\Gamma|}
 \] (2)
 The minimum mean-cost cycle can be determined in strongly polynomial time by using a modified version of the Bellman-Ford Algorithm. More precisely, the minimum mean cost cycle can be found in $O(mn)$ time. Using this method to solve the Min-Cost Circulation Problem yields the Goldberg-Tarjan Algorithm, which runs in polynomial time. Using this method to solve the Max-Flow Problem yields what is known as the “shortest” augmenting path algorithm (Edmonds-Karp). This Max-Flow Algorithm is able to find the augmenting path in $O(m)$ time, and requires $O(mn)$ iterations to arrive at the solution. Thus, the total running time is $O(m^2 n)$.

10-2
3 The Goldberg-Tarjan Algorithm

Goldberg-Tarjan Algorithm:

1. Begin with zero flow: \(f = 0 \).
2. While \(\mu(f) < 0 \) do
 push \(\delta = \min_{(v,w) \in \Gamma} u_f(v, w) \) along a minimum mean cost cycle \(\Gamma \) of \(G_f \).

Analysis of Goldberg-Tarjan Algorithm:

In order to analyze this algorithm, it is necessary to define the concept of proximity measure for a circulation \(f \).

Definition 1 A circulation \(f \) is \(\epsilon \)-optimal if there exists \(p \) such that \(c_p(v, w) \geq -\epsilon \) \(\forall (v, w) \in E_f \).

Definition 2 \(\epsilon(f) = \text{minimum } \epsilon \text{ such that } f \text{ is } \epsilon \)-optimal.

The following theorem states that the minimum mean cost \(\mu(f) \) of all cycles in \(G_f \) is equal to \(-\epsilon(f) \), as defined above.

Theorem 2 For any circulation \(f \), \(\mu(f) = -\epsilon(f) \).

Proof:

- \(\mu(f) \geq -\epsilon(f) \)
 By definition, there exists \(p \) such that \(c_p(v, w) \geq -\epsilon(f) \) \(\forall (v, w) \in E_f \). Thus, it is implied that \(c_p(\Gamma) \geq -\epsilon(f) |\Gamma| \) for any directed cycle \(\Gamma \in G_f \). But for any \(\Gamma \in G_f \), \(c(\Gamma) = c_p(\Gamma) \). Thus, dividing both sides by \(|\Gamma| \) yields that the mean cost of any directed cycle \(\Gamma \in G_f \) is at least \(-\epsilon(f) \). Therefore, \(\mu(f) \geq -\epsilon(f) \).

- \(\epsilon(f) \leq -\mu(f) \)
 Consider \(\mu(f) \). For every cycle \(\Gamma \in G_f \), it is the case that \(\frac{c(\Gamma)}{|\Gamma|} \geq \mu(f) \). Let \(c'(v, w) = c(v, w) - \mu(f) \) \(\forall (v, w) \in E_f \). With respect to this new cost function \(c' \) every cycle \(\Gamma \in G_f \) will have nonnegative cost. Now, let \(G' \) be obtained by adding a new node \(s \) to \(G_f \) and adding directed edges from \(s \) to \(v \) \(\forall v \in V \), all with zero cost. Let \(p(v) \) be the cost with respect to \(c' \) of the shortest path from \(s \) to \(v \) in the new graph \(G' \). For all edges \((v, w) \), \(p(w) \leq p(v) + c'(v, w) = p(v) + c(v, w) - \mu(f) \). This implies that \(c_p(v, w) \geq \mu(f) \) \(\forall (v, w) \in E_f \).
 Therefore, \(\epsilon(f) \leq -\mu(f) \).

- \(\mu(f) \geq -\epsilon(f) \) and \(\epsilon(f) \leq -\mu(f) \) \(\Rightarrow \epsilon(f) = -\mu(f) \).

Remark 2 Along the minimum mean cost cycle \(\Gamma \), \(c_p(v, w) = -\epsilon(f) \) \(\forall (v, w) \in \Gamma \).

Having completed the necessary definitions and proofs, we may now proceed with the analysis of the Goldberg-Tarjan Algorithm. The following theorem considers only one iteration of the algorithm.

Theorem 3 Let \(f \) be a circulation and let \(f' \) be the circulation obtained by canceling the minimum mean cost cycle \(\Gamma \) of \(G_f \). Then, \(\epsilon(f') \leq \epsilon(f) \).

Proof: By definition, there exists \(p \) such that \(c_p(v, w) \geq -\epsilon(f) \) \(\forall (v, w) \in E_f \). In the case of the minimum mean cost cycle \(\Gamma \) of \(G_f \), \(c_p(v, w) = -\epsilon(f) \) \(\forall (v, w) \in \Gamma \). After performing the one cycle-canceling step, we obtain the new residual graph \(G_{f'} \). We claim that \(c_p(v, w) \geq -\epsilon(f) \) \(\forall (v, w) \in E_{f'} \). In the case of all edges \((v, w) \in E_f \cap E_f \), the claim is certainly true. In the case of all edges
$(v, w) \in E_f \setminus E_f$, it must be true that $(w, v) \in \Gamma$. For all $(w, v) \in \Gamma$, $c_p(w, v) = -\epsilon(f)$, and thus $c_p(v, w) = \epsilon(f) \geq -\epsilon(f)$. Therefore, $c_p(v, w) \geq -\epsilon(f)$ holds true for all $(v, w) \in E_f$. \hfill \Box

The above theorem shows that by completing a single iteration of the Goldberg-Tarjan algorithm, it is impossible to generate a new flow which is farther from optimality than the original.