1 Polynomial Approximation Schemes

Definition 1 Polynomial Approximation Scheme (PAS) is a family of approximation algorithms such that \(A_\varepsilon \in \{ A_\varepsilon : \varepsilon > 0 \} \) runs in polynomial time in the size of the input (assume \(\varepsilon \) fixed) and returns a \(1 + \varepsilon \) approximate solution.

Definition 2 A Fully Polynomial Approximation Algorithm (FPAS) is a family of algorithms such that \(A_\varepsilon \) is a \((1 + \varepsilon) \)-approximation algorithm with running time polynomial in input size and \(1/\varepsilon \).

2 Scheduling Problem: \(P\|C_{\text{max}} \)

Definition 3 The Scheduling Problem \((P\|C_{\text{max}}) \): Given \(n \) jobs and \(m \) machines where each job \(j \) takes \(p_j \) processing time and completes at time \(c_j \), assign jobs to each machine minimizing the time \(C_{\text{max}} \) for the last machine to terminate its last job.

\[
C_{\text{max}} = T^* = \min \max c_j
\]

2.1 The Approach

Definition 4 A \((1 + \varepsilon) \) relaxed decision procedure for \(P\|C_{\text{max}} \) is an algorithm that, given \(T \), either says that there is no schedule with \(C_{\text{max}} \leq T \) or gives a schedule with \(C_{\text{max}} \leq T(1 + \varepsilon) \)

Initially \(T^* \) is between \(L \) and \(2L \), where \(L = \max \{ \sum_{j \in m} \max p_j \} \), so let \(T_1 \) and \(T_2 \) be \(L \) and \(2L \) respectively. We’re now going to do a logarithmic binary search on the possible values for \(T^* \) until we are within \(\varepsilon \) of \(T^* \).

Logarithmic Binary Search: If we know that \(T^* \) is between \(T_1 \) and \(T_2 \), the next value we will check is \(\sqrt{T_1 T_2} \), which is the midpoint of \(T_1 \) and \(T_2 \) on the logarithmic scale. If our \((1 + \varepsilon) \) relaxed decision procedure returns \text{NO} on \(\sqrt{T_1 T_2} \), we replace \(T_2 \) with \(\sqrt{T_1 T_2} \) else we replace \(T_1 \) with \(\sqrt{T_1 T_2} \) and continue until we are within \(\varepsilon \) of \(T^* \).

Initially, \(T_1^2 = 2 \). After \(k \) iterations, \(\log T_2 - \log T_1 = 2^{-k} \log 2 \). So if we want \(\frac{T_2}{T_1} \leq 1 + \varepsilon', \)

\(2^k \sim \log 2 / \log(1 + \varepsilon') \), \(k \sim \log(\log 2 / \log(1 + \varepsilon')) \). So, with \(k \) iterations, where \(k = O(\log \frac{1}{\varepsilon'}) \), we can get \(T_1 \) and \(T_2 \) with properties: \(T_2 / T_1 \leq 1 + \varepsilon' \), there is no schedule with \(C_{\text{max}} \leq T_1 \), and we have a schedule with \(C_{\text{max}} \leq T_2(1 + \varepsilon') \) or \(T_2(1 + \varepsilon'/2) \leq T_1(1 + \varepsilon')(1 + \varepsilon'/2) \leq T_1(1 + \varepsilon') \).

2.2 A Relaxed Decision

Definition 5 A \((1 + \varepsilon) \) relaxed decision procedure for \(P\|C_{\text{max}} \) is an algorithm that, given \(T \), either says that there is no schedule with \(C_{\text{max}} \leq T \) or gives a schedule with \(C_{\text{max}} \leq T(1 + \varepsilon) \).
Remark 1 In the preceding definition, it is possible that the procedure returns NO, when a schedule does exist for \(C_{\text{max}} \leq T(1 + \epsilon) \).

We will use a relaxed decision procedure to solve the scheduling problem. Suppose that we have a \((1 + \epsilon)\)-relaxed decision procedure for jobs with \(p_j \geq \epsilon T \). Then we do the following:

1. Remove all jobs with \(p_j < \epsilon T \).
2. Apply the \((1 + \epsilon)\)-relaxed decision procedure for the remaining jobs.
3. If the procedure returns NO, we return NO. If we get a YES, use any method to try to add in all of the small jobs without going beyond \(T(1 + \epsilon) \). If we can, return that schedule else return NO.

It is clear that if there is no schedule satisfying \(C_{\text{max}} \leq T \) on some subset of the jobs, then we cannot hope for one on all of the jobs. Also if we cannot include a job \(p_i \leq \epsilon T \) then that implies that each machine is busy at time \(T(1 + \epsilon) - p_i > T \), so there can obviously be no schedule that finishes in time \(T \).

Consider a \((1 + \epsilon)\) relaxed decision procedure for the case where \(\forall p_j \geq \epsilon T \). We want to round \(p_j \) to a \(q_j \) that is of the form \(\epsilon T + k\epsilon^2 T \) for some integer \(k \), that is

\[
q_j = \max_{k \in \mathbb{N}} \{ \epsilon T | k\epsilon^2 T \leq p_j \}
\]

Then \(p_j \) satisfies the following inequality: \(0 \leq p_j - q_j \leq \epsilon^2 T \). We output in polynomial time a schedule for \(\{q_j\} \) with \(C_{\text{max}} \leq T \) or else say NO.

- NO: return NO.
- YES: return schedule. We can do this because \(\epsilon T \leq p_j \Rightarrow q_j \geq \epsilon T \Rightarrow \) there are at most \(\frac{1}{\epsilon} \) jobs per machine. Therefore \(C_{\text{max}} \) increases by at most \(\frac{1}{\epsilon}(\epsilon^2 T) = \epsilon T \).

Now consider instances in which there are at most \(P \) jobs per machine and at most \(Q \) different processing times. In the above case, we take \(P = \frac{1}{\epsilon} \) and \(Q = \frac{1}{\epsilon^2} \). The problem is to find a schedule with \(C_{\text{max}} \leq T \) or claim that no such schedule exists, in polynomial time.

Let \((r_1, \ldots, r_Q)\) be an assignment of jobs on a single machine. Each \(r_i \) is the number of jobs of value \(p_i \) in the assignment. Let the space of all valid assignments be

\[
R = \{(r_1, \ldots, r_Q) \in \mathbb{N}^Q : \sum_i r_ip_i \leq T \}
\]

We define a function \(f : \mathbb{N}^Q \rightarrow \mathbb{N} \) such that \(f(n_1, \ldots, n_Q) \) is the minimum number of machines needed to process \(n_i \) jobs of value \(p_i \), \(i \in \{1, \ldots, Q\} \) within time \(T \).

\[
f(n_1, \ldots, n_Q) = 1 + \min_{r \in R} f(n_1 - r_1, \ldots, n_Q - r_Q)
\]

where \(0 \leq n_i \leq k_i = \) number of jobs of processing time \(p_i \).

We know that \(|R| \leq P^Q \) and \(\{|(n_1, \ldots, n_Q)| \} \leq n^Q \). By hypothesis, both of these bounds are constant. Therefore the total running time is \(O(n^Q R) = O(n^Q P^Q) = O(n^{\frac{1}{\epsilon}} \frac{1}{\epsilon^2}) \). This is polynomial for fixed \(\epsilon \).