Intro

Administrivia.

• Signup sheet.
• prerequisites: 6.046, 6.041/2, ability to do proofs
• homework weekly (first next week)
• collaboration
• independent homeworks
• grading requirement
• term project
• books.
• question: scribing?

Randomized algorithms: make random choices during run. Main benefits:

• speed: may be faster than any deterministic
• even if not faster, often simpler (quicksort)
• sometimes, randomized is best
• sometime, randomized idea leads to deterministic algorithm

Distinguish average-case analysis

• Probabilistic analysis assuming random input
• randomized algorithms do not assume random inputs
• so analyses are more applicable

We don’t really use random numbers. But randomized algorithms break patterns we don’t know are there.

• deterministic algorithm: works well except a few specific cases.
• But those are the ones you will encounter (Murphy)!

• randomized: almost always works well on any case

• but sometimes does bad on any case, so risky for life-threatening errors.

Course objective:

• Randomization is a general technique. Applies to all areas of CS.

• Underlying it is a common set of tools.

• Goal is to give familiarity with those tools so you can apply them to your own problems.

• To present tools, we draw applications from many areas of CS: data structures, geometric algos, graph algos, parallel and distributed, number theory.

• Because so many, only a brief taste of each.

• But sufficient to go on alone.

Basic methodologies.

• Avoiding adversarial inputs
 - sorted quicksort list
 - a kind of random reordering (geometry—BSP)
 - hashing to same buckets
 - online algorithms
 - note: “adversarial” may mean “well structured” i.e. natural

• fingerprinting/verification
 - generate short random fingerprints for things
 - faster than comparing things
 - almost every fingerprint works
 - so a random one works
• random sampling, graph algs, computational geometry, median
 – fast way to find “typical” members
 – solve representative subproblem fast
 – extrapolate to solution of original problem
• load balancing
 – randomization spreads things out uniformly
 – parallel algs, routing, hashing
• symmetry breaking
 – random decisions keep everyone from doing the same thing
 – ethernet
 – deadlocks avoidance in distributed systems (MUST randomize)
• Probabilistic existence proofs
 – thought experiment
 – prove an object is build with positive probability
 – guarantees object exists
 – makes search for algo worthwhile.

Today: 2 really basic principles:

• linearity of expectation

• product of event probabilities (independence)

Then some fundamental ideas:

• Kinds of randomized algorithms

• a bit of complexity
Quicksort

Items S_1, \ldots, S_n to be sorted

- suppose could pick middle element:
 \[
 T(n) = 2T(n/2) + O(n) = O(n \log n)
 \]
 works since divides into much smaller subproblems

- picking middle is hard. But an almost middle element is OK.

- pick random element. “probably” near middle and divides problem in two

- bound expected number of comparisons C

- $X_{ij} = 1$ if compare i to j

- **linearity of expectation:** $E[C] = \sum E[X_{ij}]$

- $E[X_{ij}] = p_{ij}$

- Consider smallest recursive call involving both i and j.

- pivot must be one of S_i, \ldots, S_j. all equally likely

- S_i and S_j get compared if pivot is S_i or S_j

- probability is at most $2/(j - i + 1)$ (may have outer elements)

- analysis:

 \[
 \sum_{i=1}^{n} \sum_{j>i}^{n} p_{ij} \leq \sum_{i=1}^{n} \sum_{j>i}^{n} 2/(j - i + 1) \\
 = \sum_{i=1}^{n} \sum_{k=1}^{n-i+1} 2/k \\
 \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} 1/k \\
 \leq 2nH_n
 \]
(Define H_n, claim $O(\log n)$.)

$$= O(n \log n).$$

- analysis holds for every input, doesn’t assume random input
- we proved expected. can show high probability
- how did we pick a random elements? Depends on model.
- algorithm always works, but might be slow.

BSP

- linearity of expectation. hat check problem
- Rendering an image
 - render a collection of polygons (lines)
 - painters algorithm: draw from back to front; let front overwrite
 - need to figure out order with respect to user
- define BSP.
 - BSP is a data structure that makes order determination easy
 - Build in preprocess step, then render fast.
 - Choose any hyperplane (root of tree), split lines onto correct side of hyperplane, recurse
 - If user is on side 1 of hyperplane, then nothing on side 2 blocks side 1, so paint it first. Recurse.
 - time=BSP size
- sometimes must split to build BSP
- how limit splits?
- autopartitions
- random auto

5
• analysis
 – \(\text{index}(u, v) = k \) if \(k \) lines block \(v \) from \(u \)
 – \(u \not\vdash v \) if \(v \) cut by \(u \) auto
 – probability \(1/(1 + \text{index}(u, v)) \).
 – tree size is (by linearity of \(E \))
 \[
 n + \sum 1/\text{index}(u, v) \leq \sum 2H_n
 \]
• result: \textbf{exists} size \(O(n \log n) \) auto
• gives randomized construction
• equally important, gives \textbf{probabilistic existence proof} of a small BSP
• so might hope to find deterministically.

\textbf{MinCut}

• the problem
• contraction
• conditionally independent events
• give/analyze
• repetition for better success probability (independent events)
• faster implementation later

Monte Carlo vs. Las Vegas

• turn LV to MC by truncating
• turn MC to LV by certifying.
• if can’t certify, dangerous!